459 resultados para catalytic hydrogenation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic cracking of butene to propene and ethene was investigated over HMCM-22 zeolite. The performance of HMCM-22 zeolite was markedly influenced by time-on-stream (TOS) and reaction conditions. A rapid deactivation during the first I h reaction, followed by a quasi-plateau in activity, was observed in the process along with significant changes in product distributions, which can be attributed to the fast coking process occurring in the large supercages of MCM-22.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-cost and commercially available (-)-ephedrine hydrochloride was firstly employed in the [RuCl2(1)-cymene)](2)-catalyzed asymmetric transfer hydrogenation of prochiral ketones in water. The reaction could be performed in the open air at rt, affording excellent yields (up to 99%) and good enantioselectivities (up to 83% ee). It provided a further step toward the discovery of simplified catalyst systems for eventual availability. (c) 2005 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam reforming of ethanol over CuO/CeO2 was studied. Acetaldehyde and hydrogen were mainly produced at 260degreesC. At 380degreesC, acetone was the main product, and 2 mol of hydrogen was produced from 1 mol of ethanol. The formation of hydrogen accompanied by the production of acetone was considered to proceed through the following, consecutive reactions: dehydrogenation of ethanol to acetaldehyde. aldol condensation of the acetaldehyde, and the reaction of the aldol with the lattice oxygen [O(s)] on the catalyst to form a surface intermediate, followed by its dehydrogenation and decarboxylation. The overall reaction was expressed by2C(2)H(5)OH + H2O --> CH3COCH3 + CO2 + 4H(2). Ceria played an important role as an oxygen supplier. The addition of MgO to CuO/CeO2 resulted in the production of hydrogen at lower temperatures by accelerating aldol condensation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co3O4 nanocrystals with average particle sizes of 30 and 50 run were synthesized using cobalt nitrate as precursor, and were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. Catalytic oxidation of cyclohexane with molecular oxygen was studied over Co3O4 nanocrystals. These catalysts showed obviously higher activities as compared to Co3O4 prepared by the conventional methods, Co3O4/Al2O3, or homogeneous cobalt catalyst under comparable reaction conditions. The 89.1% selectivity to cyclohexanol and cyclohexanone at 7.6% conversion of cyclohexane was realized over 50 nm sized Co3O4 nanocrystals at 393 K for 6 h. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new FeCoMnAPO-5 with AFI structure was synthesized under hydrothermal conditions and characterized by XRD, FT-IR, X-ray fluorescence, nitrogen adsorption and SEM. The oxidation of cyclohexane with molecular oxygen was studied over the catalyst at 403 K. It show d higher activity compared to FeAPO-5, CoAPO-5 and MnAPO-5. The FeCoMnAPO-5 catalyst was recycled twice without loss of activity or selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naphtha catalytic cracking were carried out at 650 degrees C over modified ZSM-5. Light olefins and BTX could be obtained over the catalysts. The products showed variable distribution with different catalyst modification. Some modification, such as Fe, Cu and La favored the BTX generation and P and Mg modification favored the light olefins production. In N-2 stream cracking catalyzed by LaZSM-5, more than 50% naphtha feed were converted to BTX, while in steam cracking, with an improved modified catalyst, P, La/ZSM-5, naphtha can be converted to light olefins with high activity and long-term stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic cracking of butene over potassium modified ZSM-5 catalysts was carried out in a fixed-bed microreactor. By increasing the K loading on the ZSM-5, butene conversion and ethene selectivity decreased almost linearly, while propene selectivity increased first, then passed through a maximum (about 50% selectivity) with the addition of ca. 0.7-1.0% K, and then decreased slowly with further increasing of the K loading. The reaction conditions were 620 degrees C, WHSV 3.5 h(-1), 0.1 MPa 1-butene partial pressure and 1 h of time on stream. Both by potassium modification of the ZSM-5 zeolite and by N(2) addition in the butene feed could enhance the selectivity towards propene effectively, but the catalyst stability did not show any improvement. On the other hand, addition of water to the butene feed could not only increase the butene conversion, but also improve the stability of the 0.7%K/ZSM-5 catalyst due to the effective removal of the coke formed, as demonstrated by the TPO spectra. XRD results indicated that the ZSM-5 structure of the 0.07% K/ZSM-5 catalyst was not destroyed even under this serious condition of adding water at 620 degrees C.