637 resultados para IR XPS
Resumo:
Polyaniline nanoparticles were prepared on a highly oriented pyrolytic graphite (HOPG) surface from dilute polyaniline acidic solution (1 mM aniline + 1 M HClO4) using a pulsed potentiostatic method. Electrochemistry, Fourier transform infrared external reflection spectroscopy (FT-IR-ERS), X-ray photoelectron spectroscopy (XPS) and tapping-mode atomic force microscopy (TMAFM) were: used to characterize the composition and structure of the polyaniline nanoparticles. FT-IR-ERS and XPS results revealed that the polyaniline was in its emeraldine form. TMAFM measurement showed that the electropolymerized polyaniline nanoparticles dispersed on the:HOPG surface with a coverage of about 10(10) cm(-2). These nanoparticles were disk-shaped having a height of 10(-30) Angstrom and an apparent diameter varying from 200 to 600 Angstrom. The particle dimensions increased with the electropolymerization charge (Q) over the interval from 5.7 to 19.3 mu C cm(-2) (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
运用电化学方法评价了电化学阴极还原 -阳极氧化两步法制得的以钛为基体的铂修饰的钛氧化物 ( Pt-Ti Ox/Ti)电极对甲醇电催化氧化的性能 ,结果表明 ,制得的修饰电极对甲醇氧化呈现了很高的电催化活性和好的稳定性 .通过 X光电子能谱 ( XPS)、扫描隧道显微镜 ( STM)和现场傅立叶变换红外 ( FTIR)反射光谱等技术 ,发现修饰电极对甲醇氧化具有高的电催化性能 ,可归属于纳米级 Pt粒子在 Ti Ox中的高度分散及由于 Pt和 Ti Ox的相互作用 ,使电极表面对甲醇氧化中间产物 CO的吸附量大大降低
Resumo:
采用中温水热法合成了立方钙钛矿单相 KZn F3 及 KZn F3 ∶ Eu,通过 SEM观察了产物形态 ;XPS测定结果表明 ,产物含氧量不高 ;荧光光谱及 ESR谱表明 ,KZn F3 ∶ Eu体系中 Eu2 +与 Eu3 +共存 ,进一步讨论了不等价取代中的电荷补偿途径
Resumo:
以苯乙烯与马来酸酐无规共聚物 ( SMA)为有机组分 ,以正硅酸乙酯 ( TEOS)为无机组分 ,利用 sol- gel方法制得纳米杂化材料 ,以此为载体合成了杂化材料载体钛系催化剂 .利用 XPS、IR分析了载体与 Ti Cl4 的结合方式 ,并进行了乙烯聚合的研究 .结果表明 ,聚乙烯活性并不高( 1.72× 10 6g/h·mol)且分子量分布为 4 .0左右 ;堆密度范围是 0 .30~ 0 .39g/cm3.
Resumo:
To obtain a novel support with practical value for metallocene catalyst (eta -C5H5)TiCl3 (CpTiCl3), poly (styrene-co-4-vinylpyridine) /SiO2 nanoscale hybrid material (SrP/SiO2) was firstly produced as support. After pretreatment by methylaluminoxane (MAO), the hybrid materials reacted with CpTiCl3. The results from SAXS, SEM and TEM indicated the morphology and structure of organic/inorganic hybrid materials, and the size of inorganic particle in hybrid was nanoscale. The results from IR and XPS showed that there were two possible cationic active species in the hybrid-supported catalyst, the polymerization results of styrene proved this possibility.
Resumo:
The effect of PMR-polyimide(POI) as the interfacial agent on the interface characteristics, morphology features and crystallization of poly (ether sulfone) /poly (phenylene sulfide) (PES/PPS) and poly(ether ether ketone)/poly (ether sulfone) (PEEK/PES) partly miscible blends were investigated by means of the scanning electron microscopy, WAXD and XPS surface analysis. It is found that the interfacial adhesion was enhanced remarkably, the size of the dispersed phase particles was reduced significantly and the miscibility was improved by the addition of POI. During melt blending cross-link and/or grafting reaction of POI with PES, PEEK and PPS homopolymers was detected, however the reaction activity of POI with PPS was much higher than that of PES and PEEK. It was also found that POI was an effective nucleation agent of the crystallization of PPS.
Resumo:
Nanometer-sized CeO2/polystyrene hybrid material was prepared using reversed micelles microemulsion method. XRD analysis revealed that the CeO2 nanoparticles in polystyrene were amorphous. XPS patterns indicated that the hybrid material was not a simply physical mixture, but a certain strength of chemical bond between CeO2 nanoparticles and polystyrene existed. FTIR patterns revealed that the absorption of Ce-O bond in hybrid material was blue-shifted.
Resumo:
The thermal influence on the electrical conductivity of polyimide film surfaces induced by KrF-laser irradiation was investigated, The formation of conducting phases was demonstrated to be highly temperature sensitive, as evidenced by strong dependence of the electrical conductivity on repetition rate and ambient temperature. XPS and Raman studies showed that the efficiency of the formation of conducting phases could be enhanced by the increase of temperature on irradiated polyimide film surfaces. After the disruption of polymeric chain, the carbon-enriched clusters remained on the irradiated polyimide film surfaces organized into polycrystalline graphite-like clusters responsible for electrical conductivity. The resulting dangling bonds from the decomposition process of polyimide acted as centers for the rearrangement of carbon-enriched clusters. It is suggested that the motion of radicals was promoted with increasing the temperature. Therefore the formation of polycrystalline graphite-like clusters benefited from high remaining temperature on the irradiated polyimide film surfaces. These results revealed that thermal influence played a dominant role on the formation of conducting phases.
Resumo:
In an acidic aqueous solution of acetonitrile, the catalytic activity of the catalysts consisted of Pd(OAc)(2)/hydroquinone(HQ) with iron phthalocyanine (FePc) from various sources was obviously different in the oxidation of cyclohexene to cyclohexanone, The analysis of the FePc using IR spectroscopy, Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), scanning electron microscopy(SEM) and BET surface area measurement indicated that the catalytic activity of the multicomponent catalytic system composed of iron phthalocyanines depends on the amount of mu -oxo FePc, the crystallinity and the surface structure of iron phthalocyanine.
Resumo:
A polythiophene film was electrochemically deposited on a Pt micro-plate electrode and investigated by cyclic voltammetry and in-situ reflection microscopic FTIR spectroscopy. The FTIR analysis showed that the electropolymerization of thiophene on the Pt surface was affected Lv the surface adsorption processes of thiophene molecules. Two adsorption modes were identified. Two structure models of the polythiophene chain were observed simultaneously. It was proposed that the good conductibility of the polythiophene film was originated from a co-vibratory equilibrium of the link part of model I and model II.
Resumo:
Poly(4 - vinylpyridine)/silica( PVP/SiO2) organic - inorganic nanoscale hybrid was prepared using sol - gel method, in which PVP was used as an organic component and TEOS as a SiO2 precusor, This hybrid was used as CpTiCl3 support. The XPS and IR measurements showed that two kinds of catalytic active site were formed through analyzing the interaction mode between support and CpTiCl3. The results of styrene polymerization showed that syndiotactic was the highest at 50 degreesC. The catalytic activity was 1.09 x 10(6) g PS/ (mol Ti . h) at 70 degreesC when n(Al)/n(Ti) = 1500. GPC results showed a bimodal molecular weight distribution.
Resumo:
研究了两种不同类型晶体结构的稀土铜酸盐中三价铜对导电性能的影响及三价铜的表征 .Ca2 +取代Y3+或Sr2 +取代La3+,使Y2 Cu2 O5和La2 CuO4中铜的价态升高、样品电阻率降低 .利用化学滴定法、X 射线光电子能谱 (XPS)和磁化率测量对Y2 -xCaxCu2 O5和La2 -xSrxCuO4中三价铜的存在及其自旋状态进行了表征.
Resumo:
在乙腈酸性水溶液中 ,不同来源酞菁铁 (FePc)和 Pd(OAc)2/HQ(氢醌)组成的催化体系在环己烯氧化反应中有明显不同的催化活性 .通过 IR、 M ssbauer、 XPS、 XRD、 SEM、 BET等技术对酞菁铁的分析表明 ,由酞菁铁组成的多组份催化体系的催化活性与酞菁铁中的μ-氧酞菁铁含量、酞菁铁结晶度和表面形态有关.
Resumo:
采用柠檬酸表面修饰 Y2 O3:Eu3+颗粒 ,苯乙烯乳液聚合的方法 ,制备出核 -壳型的 Y2 O3:Eu3+ /聚苯乙烯颗粒 .在 FTIR谱图上 ,羰基伸缩振动峰向低波数位移 ;在 XPS谱图上 ,Y3d5 / 2 的电子结合能向高能方向移动 ,表明柠檬酸和颗粒表面发生键合作用 .说明此过程符合吸附层媒介作用机理 :柠檬酸使颗粒表面变成两亲性 ,从而使苯乙烯可吸附在颗粒表面形成包覆无机核的乳液结构 .EDS谱图表明聚苯乙烯均匀地包覆在颗粒表面
Resumo:
用溶胶 -凝胶法合成了 Ce1-x Cax O2 -x(x=0~ 0 .3 5 )系列固体电解质 ,系统地研究了其晶体结构随Ca O含量的变化关系 .XRD测试表明 ,该体系于 1 60℃即形成萤石结构纯相 .高温 XRD表明 ,从室温至80 0℃ ,Ce1-x Cax O2 -x(x=0~ 0 .3 5 )未出现结构相变 .此法合成温度远低于传统的高温固相合成法和水热合成法的温度 .合成物的颗粒小 ,粒度均匀 .在 1 3 0 0℃即可烧结成高致密度样品 .XPS测试表明 ,掺杂 Ca O后吸附氧浓度明显增大 ,氧空位增多 ,电导率和氧离子迁移数增大 ,改善了 Ce O2 基固体电解质的性能 .