451 resultados para FE-57


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron-substituted SBA-15 (Fe-SBA-15) materials have been synthesized via a simple direct hydrothermal method under weak acidic conditions. The powder X-ray diffraction (XRD), NZ sorption and transmission electron microscopy (TEM) characterizations show that the resultant materials have well-ordered hexagonal meso-structures. The diffused reflectance UV-vis and UV resonance Raman spectroscopy characterizations show that most of the iron ions exist as isolated framework species for calcined materials when the Fe/Si molar ratios are below 0.01 in the gel. The presence of iron species also has significant salt effects that can greatly improve the ordering of the mesoporous structure. Different iron species including isolated framework iron species, extraframework iron clusters and iron oxides are formed selectively by adjusting the pH values of the synthesis solutions and Fe/Si molar ratios. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CO hydrogenation to light alkenes was carried out on manganese promoted iron catalysts prepared by coprecipitation and sol-gel techniques. Addition of manganese in the range of 1-4 mol.% by means of coprecipitation could improve notably the percentage of C-2 (=) similar to C-4 (=) in the products, but it was not so efficient when the sol-gel method was employed. XRD and H-2-TPR measurements showed that the catalyst samples giving high C-2 (=) similar to C-4 (=) yields possessed ultra. ne particles in the form of pure alpha-(Fe1-xMnx)(2)O-3, and high quality in lowering the reduction temperature of the iron oxide. Furthermore, these samples displayed deep extent of carburization and different surface procedures to the others in the tests of Temperature Programmed Surface Carburization (TPSC). The different surface procedures of these samples were considered to have close relationship with the evolving of surface oxygen. It was also suggested that for the catalysts with high C-2 (=) similar to C-4 (=) yields, the turnover rate of the active site could be kept at a relatively high level due to the improved reducing and carburizing capabilities. Consequently, there would be a large number of sites for CO adsorption/dissociation and an enhanced carburization environment on the catalyst surface, so that the process of hydrogenation could be suppressed relatively to a low level. As a result, the percentage of the light alkenes in the products could be raised.