185 resultados para vinyl alanates
Resumo:
Ion-molecule reactions of four isomeric cyclopropane derivatives were investigated under chemical ionization(CI) conditions, using methane, acetone and vinyl acetate as reagent gases, The methane positive-ion CI mass spectra of each of two isomer pairs 1,2 and 3,4 are identical, and so are the collision-induced dissociation (CTD) spectra of the protonated molecules of each of the two isomer pairs, The protonation reactions for the isomer pairs 1,2 and 3,4 occurred on the sites of the carboxyl groups and the R groups, respectively, Differences between isomers 1 and 2 are observed in their acetone (A) positive-ion CI mass spectra and in the CID spectra of their adduct ions ([M+H+A](+)), The adduct ions of compounds 2, 3 and 4 with protonated acetone and with protonated acetone dimer are observed in their CI mass spectra, However, only the adduct ions of compound 1 with protonated acetone appear in its CI mass spectrum, The protonated dimers of each of the four compounds are found in their vinyl acetate positive-ion CI mass spectra, and the CID spectra of these dimers for isomers 1 and 2 can also reflect their stereostructural difference. (C) 1998 John Wiley & Sons, Ltd.
Crystallization kinetics and morphology of poly(beta-hydroxybutyrate) and poly(vinyl acetate) blends
Resumo:
The crystallization behavior and morphology of poly(beta-hydroxybutyrate) and poly(vinyl acetate) blends have been studied with DSC, POM, SAXS and WAXD methods. The results indicate that the overall crystallization rate and spherulite growth rate are slower in the blends than that in the pure PHB. The addition of PVAc has no effect on the crystal structure of PHB, but affects its crystalline morphology. During crystallization of PHB, PVAc chains were being rejected into the region between the lamellae of crystalline PHB. (C) 1997 Elsevier Science Ltd.
Resumo:
The crystal structure and mechanism of the title molecule are described. This crystal is orthorhombic, belonging to space group PC21/B with a=1,002 1(2) nm, b=1.483 0(3) nm, c=2.173 6(4) nm, V=3.230 39(2) nm(3), Z=2, D-c=1.80 g/cm(3), R=0.069 3. The structure was solved by direct method. The tin atom of the title compound exists in two distorted-trigonal-bipyramidal geometry, defined by two carbon, one bromide, one chloride and one oxygen atoms leading to a five-membered chelate ring. In the structure, the five-membered ring containing the intermolecular O-->Sn has a half chair conformation.
Resumo:
Blends of poly(vinyl methyl ether) (PVME) and poly(methyl methacrylate) (PMMA) compatibilized by poly(styrene-block-methyl methacrylate) (P(S-b-MMA)) ale studied by FT-IR, DSC, excimer fluorescence spectrometry, and scanning electron microscopy (SEM). In FT-IR measurement the ratio of absorption intensity at 1107 cm(-1) to that at 1085 cm(-1) (I-1107/I-1085) reaches a minimum at about 10wt% block copolymer content. DSC results show that the glass transition temperature of PVME in the blends has a maximum at 10 wt% copolymer content. In plots of the ratio of excimer-to-monomer fluorescence emission intensities (I-E/I-M) VS block copolymer content, I-E/I-M increases rapidly above 10%. Ail these phenomena show that PS block chains penetrate into PVME: domains on addition of block copolymer. Above 10% copolymer content, block copolymer chains tend to form micelles in bulk phase.
Resumo:
The miscibility of blends of cellulose diacetate (CDA) and poly(vinyl pyrrolidone) (PVP) was extensively studied by means of differential thermal analysis and dynamic mechanical thermal analysis, tensile test, measuring viscosity of diluted and concentrated solutions of blends in acetone-ethanol mixture and morphological observations. A single glass transition temperature is observed, which is intermediate between the glass transition temperatures associated with each component and depends on composition. A synergism in mechanical properties of blends was found. The absolute viscosity and the intrinsic viscosity of solutions of blends are much higher than the weight average values of solutions of CDA and PVP. Optically clear and thermodynamically stable films were formed in the composition range of CDA/PVP = 100/0 to 50/50w/w. Fourier transform infrared was used to investigate the nature of CDA-PVP interaction. Hydrogen bonds were formed between hydroxyl groups of CDA and carbonyl groups of PVP. Heats of solutions of CDA/PVP blends and their mechanical mixtures were measured by using a calorimeter. Mixing enthalpy obtained with Hess's law approach was used to quantify interaction parameters of this blending system. It was found that mixing enthalpies and interaction parameters were negative and composition dependent. (C) 1997 Elsevier Science Ltd.
Resumo:
The compounds of [Z]-1-[2-(triphenyl stannyl) vinyl] cyclooctanol (1) and [Z]-1-[2-(tri-p-tolyl stannyl) vinyl] cyclooctanol (2) were synthesized by the reactions of triphenyltin hydride and tri-p-tolyltin hydride with 1-ethynyl cyclooctanol. The crystal structure of compound 1 was determined. The reactions of compound 1 and 2 with IC1, Br-2, I-2 formed nine organotin halides. The organotin oxide or hydroxide were prepared by the reactions of [Z]-1-[2-(phenyl dibromo stannyl) vinyl] cyclooctanol (6) and [Z]-1-[2-(diphenyl monobromo stannyl) vinyl] cyclooctanol (5) with KOH. Three complexes were obtained by the reactions of [Z]-1-[2-(phenyl diiodide stannyl) vinyl] cyclooctanol (8) with three ligands (2,2'-bipyridyl,5-nitro-1,10-phenanthroline,8-Hydroxyquinoline). The sixteen new compounds synthesized in this paper were characterized by means of elemental analysis, IR, H-1 NMR. The reaction mechanism of triphenyltin hydride and tri-p-tolyltin hydride with 1-ethynyl cyclooctanol were also proposed.
Resumo:
The appearence of the new fluorescence peak at about 570 nm demonstrates exciplex formation between the singlet states of 9-vinyl anthracene and p-N, N-dimethylamino stytene. With increasing the polarity of solvents t the red-shift of the emission wavelength occurs and the fluorescence quantum yield of the exciplex decreases. For example t the fluorescence peak is at 550 nm in totuene and at 595 nm in butanone. The fluorescence quatum yields in totuene and in butanone are 0.053 and O respectively. Both the relative yield of the photocycloaddition dimer and the ratio of the relative yields of the trans and cis dimers decrease with increasing the polarity of solvents. For example, the relative yields of the dimer are 1.0 in totuene and 0.04 in butanone respectively. The ratio of the relative yields of traits and cis dimers are 0.54 and 0 in totuene and butanones t respectively. In addition, the exciplex intermediate mechanism was suggested for the photocycloaddition between 9-vinyl anthracene and 9-N, N-dimethylamino styrene.
Resumo:
A new comblike polymer host for polymer electrolyte was synthesized by reacting monomethyl ether of poly(ethylene glycol) with poly(vinyl methyl ether-alt-maleic anhydride) and endcapping the residual carboxylic acid with methanol. Butanone was selected as a solvent for the esterification in order to obtain a completely soluble product. The synthesis process was traced through by LR. Compared with the model compounds, the presumed structure of this comblike polymer has been proved to be valid by C-13 NMR The comb polymer is a white rubbery solid. It can be dissolved in butanone and THF, and manifests good film forming ability.
Resumo:
The intrinsic viscosities of poly(ethylene oxide)-poly(vinyl acetate) blends (PEO-PVA) have been measured in chloroform as a function of molecular weights of blend components and compositions. The interaction parameters Delta b obtained from the modified Krigbaum and Wall theory and the differences between the intrinsic viscosities of polymer mixtures and the weight-average intrinsic viscosities of the two blend components were both used to characterize the extent of miscibility of the blend mixtures. (C) 1995 John Wiley and Sons, Inc.
Resumo:
The dependence of thermal degradation behaviour on vinyl acetate (VA) content of ethylene-vinyl acetate (EVA) copolymers was studied by thermogravimetric analysis (t.g.a.). Among the parameters investigated, the maximum rate of weight loss at the stage of
Resumo:
The glass transition behaviour, microphase separation morphology and crystallization of poly(vinyl alcohol)-g-poly(methyl methacrylate) graft copolymers (PVA-g-PMMA) were studied. A lamellar microphase separation morphology was formed, even for a copolyme
Resumo:
The excimer fluorescence of a triblock copolymer, styrene-butadiene-styrene (SBS) containing 48 wt% polystyrene was used to investigate its miscibility with poly(vinyl methyl ether) (PVME). The excimer-to-monomer emission intensity ratio I(M)/I(E) can be used as a sensitive probe to determine the miscibility level in SBS/PVME blends: I(M)/I(E) is a function of PVME concentration, and reaches a maximum when the blend contains 60% PVME. The cloud point curve determined by light scattering shows a pseudo upper critical solution temperature diagram, which can be attributed to the effect of PB segments in SBS. The thermally induced phase separation of SBS/PVME blends can be observed by measuring I(M)/I(E), and the phase dissolution process was followed by measuring I(M)/I(E) at different times.
Resumo:
Blends of crystallizable poly(vinyl alcohol) (PVA) with poly(N-vinyl-2-pyrrolidone) (PVPy) were studied by C-13 cross-polarization/magic angle spinning (CP/MAS) n.m.r. and d.s.c. The C-13 CP/MAS spectra show that the blends were miscible on a molecular level over the whole composition range studied, and that the intramolecular hydrogen bonds of PVA were broken and intermolecular hydrogen bonds between PVA and PVPy formed when the two polymers were mixed. The results of a spin-lattice relaxation study indicate that blending of the two polymers reduced the average intermolecular distance and molecular motion of each component, even in the miscible amorphous phase, and that addition of PVPy into PVA has a definite effect on the crystallinity of PVA in the blends over the whole composition range, yet there is still detectable crystallinity even when the PVPy content is as high as 80 wt%. These results are consistent with those obtained from d.s.c. studies.
Resumo:
Heat-of-mixing data, obtained on blends of poly(ethylene oxide) (PEO) with whole and fractionated poly(vinyl acetate) (PVAc), were used to feed Patterson's theory of polymer-polymer miscibility. Negative values of mixing enthalpy, contact-energy term, interaction'' parameter and excess volume were obtained only for blends with the lowest molecular weight PVAc fraction. These results show that miscibility of PVAc with PEO strongly depends on its molecular weight. The calculated unfavourable excess volume term of the Patterson equation is small in comparison with the absolute value of the interaction term. Therefore, miscibility of PEO and low-molecular-weight PVAc is dictated by the weak specific interactions between different repeat units and by the entropic gain in the mixing process.
Resumo:
The substituent chemical shift (SCS) has been applied to the assignment of the C-13 NMR spectrum of chlorinated polyethylene (CPE). CPE of different chlorine contents has been employed and their sequence structure discussed. The results show that characteristic of CPE with medium chlorine content is the dichloroethane structure in molecular chain. SCS parameters have been obtained from the C-13 NMR spectra. It was found that the effects of chlorine content and temperature on SCS are negligible, but the substituent parameter S1 reduced by 0.39 ppm when C2Cl4 was added to solvent ODCB.