63 resultados para urine retention


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of feeding level on growth, retention efficiency, faeces production and energy partitioning of redlip mullet were studied. A practical diet was used and fed at six levels from starvation, 1%, 2%, 3%, 4% of body weight (BW) to satiation for 3 weeks. The temperature was kept at 24 +/- 1 degrees C. Reducing the feeding amount resulted in significantly lower weight gain, and retention efficiency was significantly affected by feeding levels and attained the maximum at maximum feeding intake. Feeding 2% BW was the minimum required for fish to maintain growth. Fish carcass composition under different feeding levels could be divided into three groups: (1) starvation and FL1; (2) FL2 and FL3 and (3) FL4 and satiation, with significant differences among the groups but no differences in the groups except that ash content remained at constant value. Body composition of fish of group 2 was close to initial fish. The thermal-unit coefficient was 0.0381 at satiation, and significantly increased with increasing feeding levels. In order to accurately estimate basal metabolism (HeE), another trial on the relationship between HeE (kJ) and BW (g) was carried out. An exponential curve as HeE=0.1255BW(0.8386) explained this relationship. Intake energy (IE) increased from 11.30 to 63.08 kJ per fish, matching with different feeding levels. Energy allocated to growth of IE decreased with reducing feeding amount. There was a linear relationship between metabolism energy and retention energy in percentage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method has been developed to describe the quantitative relationship between molecular structures of PCDFs and their gas chromatographic retention indices on a 30-m fused silica column coated with DB-5 stationary phase. The regression equation is derived with a multiple correlation coefficient greater than 0.9995. The highest residual is 20 index units. The standard deviation is less than 7 index units. Using this regression equation, the retention indices of PCDFs for which data is not available have also been predicted. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (K-oc) was developed based on correlations with k in soil/water systems. Strong log K-oc versus log k correlations (r>0.96) were found. The estimated K-oc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated K-oc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of methanol in methanol-water mixed eluents on the capacity factor (P), an important parameter which could depict leaching potential of hydrophobic organic chemicals (HOCs) in soil leaching column chromatography (SLCC), was investigated. Two reference soils, GSE 17201 obtained from Bayer Landwirtschaftszentrum, Monheim, Germany and SP 14696 from LUFA, Spencer, Germany, were used as packing materials in soil columns, and isocratic elution with methanol-water mixtures at different volume fractions of methanol (phi) were tested. Shortterm exposure of the column (packed with the GSE 17201 soil) to the eluents increased solute retention by a certain (23% log-unit) degree evaluated through a correlation with the retention on the same soil column but unpreconditioned by methanol-containing eluents. Long-term exposure of soil columns to the eluents did not influence the solute retention. A log-linear equation, log k' = log k'(w) - Sphi, could well and generally describe the retention of HOCs in SLCC. For the compounds of homologous series, logk'(w), had good linear relationship with S, indicating the hydrophobic partition mechanism existing in the retention process. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reversed-phase high-performance liquid chromatographic (RP-HPLC) retention parameters, which are determined by the intermolecular interactions in retention process, can be considered as the chemical molecular descriptors in linear free energy relationships (LFERs). On the basis of the characterization and comparison of octadecyl-bonded silica gel (ODS), cyano-bonded silica gel (CN), and phenyl-bonded silica gel (Ph) columns with linear solvation energy relationships (LSERs), a new multiple linear regression model using RP-HPLC retention parameters on ODS and CN columns as variables for estimation of soil adsorption coefficients was developed. It was tested on a set of reference substances from various chemical classes. The results showed that the multicolumn method was more promising than a single-column method was for the estimation of soil adsorption coefficients. The accuracy of the suggested model is identical with that of LSERs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degreesC was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degreesC (k'(30)/k'(40)) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C-18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. (C) 2002 Elsevier Science Ltd. All rights reserved.