69 resultados para tributyltin hydride
Resumo:
Ti45Zr35Ni13Pd7 alloys are prepared by melt spinning at different cooling rates (v). The phase structure and electrochemical hydrogen storage performance are investigated. When U is 10 m/s, the alloy consists of icosahedral quasicrystalline phase (I-phase), C14 Laves phase and a little amorphous phase. When v increases to 20 or 30 m/s, a mixed structure of I-phase and amorphous phase is formed. Maximum discharge capacity of alloy electrode decreases from 156 mAh/g (v = 10 m/s) to 139 mAh/g (v = 30 m/s) with increasing v. High-rate discharge ability at the discharge current density of 240 mA/g decreases monotonically from 61.2% (v = 10 m/s) to 56.8% (v = 30 m/s).
Resumo:
Ti45Zr35Ni20-xPdx (x = 0, 1, 3, 5 and 7, at%) alloys were prepared by melt-spinning. The phase structure and electrochemical hydrogen storage performances of melt-spun alloys were investigated. The melt-spun alloys were icosahedral quasicrystalline phase, and the quasi-lattice constant increased with increasing x value. The maximum discharge capacity of alloy electrodes increased from 79 mAh/g (x = 0) to 148 mAh/g (x = 7). High-rate dis-chargeability and cycling stability were also enhanced with the increase of Pd content. The improvement in the electrochemical hydrogen storage characteristics may be ascribed to better electrochemical activity and oxidation resistance of Pd than that of Ni.
Resumo:
Effect of La-Mg-based alloy (AB(5)) addition on Structure and electrochemical characteristics of Ti0.10Zr0.15V0.35Cr0.10Ni0.30 hydrogen storage alloy has been investigated systematically. XRD shows that the matrix phase structure is not changed after adding AB(5) alloy, however, the amount of the secondary phase increases with increasing AB(5) alloy content. The electrochemical measurements show that the plateau pressure Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% La0.85Mg0.25Ni4.5Co0.35Al0.15 (X = 0, 1, 5, 10, 20) hydrogen storage alloys increase with increasing x, and the width of the pressure plateau first increases when x increases from 0 to 5 and then decreases as x increases further, and the maximum discharge capacity changes in the same trend.
Resumo:
The structure and electrochemical characteristics of melted composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% LaNi4Al0.4Mn0.3Co0.3 (x = 0, 1, 5) hydrogen storage alloys have been investigated systematically. XRD shows that though the main phase of the matrix alloy remains unchanged after LaNi4Al0.4Mn0.3Co0.3 alloy is added, a new specimen is formed. The amount of the new specimen increases with increasing x. SEM-EDS analysis indicates that the V-based solid solution phase is mainly composed of V, Cr and Ni; C14 Laves phase is mainly composed of Ni, Zr and V; the new specimen containing La is mainly composed of Zr, V and Ni. The electrochemical measurements suggest that the activation performance, the low temperature discharge ability, the high rate discharge ability and the cyclic stability of composite alloy electrodes increase greatly with the growth of x.
Resumo:
Ti-Zr-V-Mn-Ni-based multi-component alloys demonstrate high discharge capacity in KOH electrolyte. However, the drastic decrease in their discharge capacities makes them unsuitable for use as negative electrode material in the Ni/MH battery. In present work, Ni is partially replaced by Cr in the Ti-Zr-V-Mn-Ni-based alloys to improve their cycle life. The effects of Cr substitution on microstructures and the electrochemical characteristics of the alloys are investigated. It is found that Cr substitution is very effective to improve the cyclic durability of the alloys although the discharge capacity decreases with changing x from 0.05 to 0.20. Some kinetic performances have been also investigated using electrochemical impedance spectroscopy (EIS) and potentiostatic discharge technique.
Resumo:
A new process for the preparation of 3,5-dihydroxy-1-pentylbenzene, which is used as medicinal intermediate and raw material for the synthesis of HIV restrainer, is proposed in this paper. Technical 3,5-dimethoxybenzoic acid reacted with lithium hydride to form a salt (I) which acylated n-butyllithium directly to give 1-(3,5-dimethoxyphenyl)-1-pentanone (II) in 85.06% yield. Then (II) was reduced through a Wolff-K-Huangminglong reaction at 210 degrees C to give 3,5-dimethoxy-1-pentylbenzene (III). Finally, (III) refluxed with melt pyridine hydrochloride at 200 degrees C for 2 h to afford the target product 3,5-dihydroxy-1-pentylbenzene (IV). The total yield of (IV) amounted to 61.50% and its mass percentage was 98.22%. The products were characterized by means of IR, H-1-NMR, GC and HLPC-MS. The results indicated that this synthetic route was feasible, characterized by simple process and higher yield, and superior to the published ones.
Resumo:
Ti44Zr32Ni22Cu2 and Ti41Zr29Ni28Cu2 alloys were prepared by the melt-spinning method. The phase structure was analyzed by X-ray diffraction, and the electrochemical performances of the melt-spun alloys were investigated. The results indicated that the Ti44Zr32Ni22Cu2 alloy was composed of the icosahedral quasicrystals and amorphous phases, and the Ti41Zr29Ni28Cu2 alloy comprised icosahedral quasicrystals, amorphous, and Laves phases. The maximum discharge capacity was 141 mAh/g for the Ti44Zr32Ni22Cu2 alloy and 181 mAh/g for the Ti41Zr29Ni28Cu2 alloy, respectively. The Ti41Zr29Ni28Cu2 alloy also showed a better high-rate dischargeabifity and cycling stability. The better electrochemical properties should be ascribed to the high content of Ni, which was beneficial to the electrochemical kinetic properties and made the alloy more resistant to oxidation, as well as to the Laves phase in the Ti41Zr29Ni28Cu2 alloy, which could work as the electro-catalyst and the micro-current collector.
Resumo:
Ti45Zr35Ni17Cu3 amorphous and icosahedral quasicrystal line (I-phase) powders were synthesized by mechanical alloying (MA) and subsequent annealing, the phase structure and hydrogen absorption properties of two powders were investigated. XRD analysis indicated that the MAed powder was an amorphous phase and annealed powder was an I-phase. Two alloy exhibited excellent hydrogen adsorption property and started to absorb hydrogen without induction time. PCT measurement showed that the plateau pressure of the amorphous powders was obviously higher than that of the I-phase powders. After the first hydrogen cycling, the partial amorphous phase changed to (Zr, Ti)H-2 phases, and the I-phase was steady. Similar hydride phases Ti2ZrH4 and (Zr, Ti)H-2 were also formed after the second hydrogen cycling for the amorphous and I-phase alloy powders.
Resumo:
The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g(-1) at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.
Resumo:
Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3 (RE=Ce, Dy) hydrogen storage electrode alloys have been investigated using XRD, FESEM-EDS, ICP-MS and EIS measurements. The alloy is composed of V-based solid solution phase with a dendritic shape and a continuous C14 Laves phase with a network shape surrounding the dendrite. Pressure-composition isotherm curves indicate that the alloy with Dy addition has a lower equilibrium hydrogen pressure and a wider plateau region. The alloy electrode with Dy addition has higher discharge capacity, while the alloy electrode with Ce addition has better activation and higher cycle stability. The alloy electrode with Ce addition has better electrochemical activity with higher exchange current density (127.5 mA g(-1)), lower charge transfer resistance (1.37 Omega) and lower apparent activation energy (30.5 kJ mol(-1)). The capacity degradation behavior for the alloy electrode is attributed to two main factors: one is the dissolutions of V and Zr element to KOH solution, and another is the larger charge transfer resistance which increases with increasing cycle number.
Resumo:
Effect of cerium on the microstructure and electrochemical performance of the Ti0.25V0.35-xCexCr0.1Ni0.3 (x = 0, 0.005) electrode alloy was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM-EDS), and electrochemical impedance spectroscopy (EIS) measurements. On the basis of XRD and FESEM-EDS analysis, the alloy was mainly composed of V-based solid solution with body-centered-cubic structure and TiNi-based secondary phase. Ce did not exist in two phases, instead, it existed as Ce-rich small white particles, with irregular edges, distributed near the grain boundaries of the V-based solid solution phase. Discharge capacity, cycle stability, and high-rate discharge ability of the alloy electrode were effectively improved with the addition of Ce at 293 K. It was very surprising that the charge retention was abnormal with larger discharge capacity after standing at the open circuit for 24 h. EIS indicated that addition of Ce improved the dynamic performance, which caused the charge transfer resistance (R-T) to decrease and exchange current density (I-0) to increase markedly. The exchange current density of the electrochemical reaction on the alloy surface with Ce addition was about 2.07 and 3.10 times larger than that of the alloy without Ce at 303 and 343 K, respectively.
Resumo:
An efficient synthetic procedure for substituted 2,3,6,7tetrahydrothiopyrano [2,3-b] thiopyran-4,5 -diones by a double annulation strategy is described. The ring systems are made in good yields from readily available dialkenoylketene dithioacetals in the presence of either sodium sulfide nonahydrate/N,N-dimethylformamide (DMF) or a sodium hydride/DMF/amine system.
Resumo:
The effects of both organically modified montmorillonite (OMMT) and Ni2O3 on the carbonization of polypropylene (PP) during pyrolysis were investigated. The results from TEM and Raman spectroscopy showed that the carbonized products of PP were mainly multiwalled carbon nanotubes (MWNTs). Surprisingly, a combination of OMMT and Ni2O3 led to high-yield formation of MWNTs. X-ray powder diffraction (XRD) and GC-MS were used to investigate the mechanism of this combination for the high-yield formation of MWNTs from PP. Bronsted acid sites were created in degraded OMMT layers by thermal decomposition of the modifiers. The resultant carbenium ions play an important role in the carbonization of PP and the formation of MWNTs. The degradation of PP was induced by the presence of carbenium ions to form predominantly products with lower carbon numbers that could be easily catalyzed by the nickel catalyst for the growth of MWNTs. Furthermore, carbenium ions are active intermediates that promote the growth of MWNTs from the degradation products with higher carbon numbers through hydride-transfer reactions. The XRD measurements showed that Ni2O3 was reduced into metallic nickel (Ni) in situ to afford the active sites for the growth of MWNTs.
Resumo:
The degradation and flame retardancy of polypropylene/organically modified montmorillonite (PP/OMMT) nanocomposite were studied by means of gas chromatography-mass spectrometry and cone calorimeter. The catalysis of hydrogen proton containing montmorillonite (H-MMT) derived from thermal decomposition of (alkyl) ammonium in the OMMT on degradation of PP strongly influence carbonization behavior of PP and then flame retardancy. Bronsted acid sites on the H-MMT could catalyze degradation reaction of PP via cationic mechanism, which leads to the formation of char during combustion of PP via hydride transfer reaction. A continuous carbonaceous MMT-rich char on the surface of the burned residues, which work as a protective barrier to heat and mass transfer, results from the homogeneous dispersion of OMMT in the PP matrix and appropriate char produced.
Resumo:
The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.