124 resultados para three act structure
Resumo:
Microscopic three-nucleon force consistent with the Bonn B two-nucleon potential is constructed, which includes Delta(1232), Roper, and nucleon-antinucleon excitation contributions. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined. At the high densities,the nuclear equation of state and the symmetry energy are calculated. The corresponding neutron star mass-radius relations are presented.
Resumo:
A novel metal-organic framework [Cu-3(m-TATB)(2)Py(CH3OH)(2)] (1) constructed of a triazine-based trigonal-planar ligand, 3,3',3 ''-s-triazine-2,4,6- triyltribenzoate (m-H(3)TATB), has been synthesized and structurally characterized. Compound 1 features three-dimensional (3D) channels and cavities together, and exhibits high carbon dioxide sorption at normal pressure.
Resumo:
Two- and three-dimensional Au nanoparticle/[tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) nanostructured materials were prepared by "bottom-up" self-assembly. The electrocatalytic and plasmonic properties of the Au nanoparticle/CoTMPyP self-assembled nanostructured materials (abbreviated as Au/CoTMPyP SANMs) are tunable by controlled self-assembly of the An nanoparticles and CoTMPyP on indium tin oxide (ITO) electrode. The electrocatalytic activity of the Au/CoTMPyP SANMs can be tuned in two ways. One way is that citrate-stabilized An nanoparticles are positioned first on ITO surface with tunable number density, and then positively charged CoTMPyP ions are planted selectively on these gold sites. The other way is that An nanoparticles and CoTMPyP are deposited by virtue of layer-by-layer assembly, which can also tune the amount of the as-deposited electrocatalysts. FE-SEM studies showed that three-dimensional SANMs grow in the lateral expansion mode, and thermal annealing resulted in both surface diffusion of nanoparticles and atomic rearrangement to generate larger gold nanostructures with predominant (I 11) facets.
Resumo:
A novel 3D supramolecular assembly constructed from decavanadate and caffeine building blocks, (NH4)(2)(C8H10N4O2)(4)[H4V10O28].2H(2)O (1), has been synthesized in aqueous solution and characterized by elemental analysis, IR, H-1 NMR, V-51 NMR, TG-DTA, and single crystal X-Ray diffraction. The compound 1 crystallizes in monoclinic system, space group P2(1)/n, a = 15.801(1) Angstrom, b = 12.914(1) Angstrom, c = 15.913(2) Angstrom, beta = 113.55degrees, V = 2976.4 (5) Angstrom(3), Z = 2, R = 0.0498 with 6818 reflections. Water molecules, ammonium ions, and caffeine act as "cement" linking the polyanions into 1D chain along the c-axis by hydrogen bonding. In compound 1, extensive hydrogen-bond contacts and strong pi-pi interactions lead to an ordered 3D supramolecular framework. TG-DTA curves indicate that the weight loss of the complex can be divided into three stages.
Resumo:
A new index, i.e., the periphery representation of the projection of a molecule from 3D space to a 2D plane is described. The results, correlation with toxicity of substituted nitrobenzenes, obtained by using periphery descriptors are much better than that obtained by using the areas (i.e., shadows) of projections of the compounds. Even better results were achieved by using the combination of periphery descriptors and the projections areas as well as the indicated variable K reflecting the action of group NO position on the benzene ring.
Resumo:
A new open-framework zincophosphate, Zn-0.5(H2PO4).0.5H(2)O (denoted as FJ-13), possessing intersecting three-dimensional helical channels, has been synthesized under solvothermal conditions.
Resumo:
Five variables for phenol derivatives were calculated by molecular projection in three-dimensional space which were combined with eight quantum-chemical parameters and three Am indices. These variables were selected by using leaps-and-bounds regression analysis. Multiple linear regression analysis and artificial neural networks' were performed, and the results obtained by using. artificial neural networks are superior than that obtained by using multiple linear regression.
Resumo:
A series of 3,4-dimethyl-4-(3-hydroxyphenyl) piperidine opioid antagonists with varying substituents on the nitrogen were evaluated for their effect on food consumption in obese Zucker rats. In developing three-dimensional quantitative structure-activity relationship (3D-QSAR) studies for this series of opioid antagonists, different structure alignments have been tested to predict the anorectant activities. The interaction energies between molecules and the probe atom were then correlated with anorectant activity using partial least squares (PLS) method. The steric and electrostatic features of the 3D-QSAR were presented in the form of standard deviation coefficient contour maps of steric and electrostatic fields. The results showed that 3D-QSAR results are much better than the results obtained by 2D-QSAR.
Preparation, structure, and properties of three-dimensional ordered alpha-Fe2O3 nanoparticulate film
Resumo:
alpha-Fe2O3 nanoparticulate films could be formed on the surface of alpha-Fe2O3 hydrosol after aging of the hydrosol or by compressing of the nanoparticles on the sol surface, in. which a three-dimensional ordered structure was constructed by the Langmuir-Blodgett; technique and colloid chemical methods. The structure of the LB film was characterized by AFM, TEM, XPS, and UV-vis spectra and small-angle X-ray diffraction. Gas-sensing measurement shows that the LB film has good sensitivity to alcohols at room temperature,
Resumo:
The Ophiophagus hannah (King Cobra) neurotoxin CM-11 is a small protein with 72 amino acid residues, Based on complete assignments of H-1-NMR resonances and determination of secondary structures of CM-11, 349 distance and 27 dihedral angle constraints including 19 phi's and 8 chi's were collected from NOESY and DQF-COSY , and the chemical stereospecific assignment of beta(1)H was partially achieved, Twelve structures with lower energy was obtained via metric matrix distance geometry and refinement with simulated annealing, These structures have a low RMSD of 0.14 nm for backbone atoms and 0.20 nm for heavy atoms, with no distance constraint violation more than 0.05 nm, and no dihedral angle violation more than 3 degrees.
Resumo:
In recent years there has been a resurgence of interest in inhibitors of cyclic nucleotide phosphodiesterases (PDE) and enzymes responsible for the intracellular hydrolysis of the second messenger cAMP and cGMP. In this study, a series of 2-substituted phenyllimidazo[4,5-b]pyridines have been made to investigate 3D-QSAR of PDE activity using CoMFA. CoMFA resulted in a quantitative description of the major steric and electrostatic field effects, and gave significant new insights to factors governing PDE inhibition activity. The model was used to predict the PDE inhibition activity of imidazopyridines with satisfactory results.
Resumo:
Comparative molecular fiels analysis (CoMFA) has been applied to the studies of the correlation of the N-nitroso compounds and their carcinogenic activities, The comparison of CoMFA results with different lattice spacing and different atom probes was investigated, CoMFA resulted in a quantitative description of the major steric and electrostatic field effects and gave significant new insights to factors governing potency.
Resumo:
Three new compounds AgLnMo(2)O(8) (Ln = Eu, Gd, Tb) crystallize with a tetragonal scheelite-type structure characterized by MoO4 tetrahedra. The IR spectra show three absorption bands, which correspond respectively to the nu(1), nu(2), and nu(3) modes of the tetrahedral-MoO42- groups. The emission of AgGdMo2O8 shows the band of the MoO42- groups around 600 nm wavelength with very weak intensity. Both AgEuMo2O8 and AgTbMo2O8 emit intensely, and the concentration quenchings of both Eu3+ and Tb3+ luminescences are very weak. For all compounds, Ag+ luminescence is not observed. (C) 1996 Academic Press, Inc.
Resumo:
In the structure of catena-poly[{triaqua(L-pro-line-O)erbium(III)}-bis-mu-(L-proline-O:O')-{triaqua-(L-proline-O)erbium(III)}-bis-mu-(L-proline-O:O') hexaperchlorate], each Er3+ ion is coordinated by five carboxyl O atoms from the L-proline molecules and three water molecules. Four of the SiX L-proline molecules act as bidentate bridging ligands to link the Er3+ ions through the carboxyl groups, thus producing a one-dimensional chain structure. The other two ligands coordinate unidentately to the rare-earth ions. Hydrogen bonds formed between the coordinated water molecules and between the water and unidentate proline ligand stabilize the polymeric chain.