114 resultados para the self-condemnation.
Resumo:
In this paper, we demonstrate the self-assembly of ionic liquids (ILs)-stabilized Pt nanoparticles into two-dimensional (2D) patterned nanostructures at the air-water interface under ambient conditions. Here, ILs are not used as solvents but as mediators by virtue of their pronounced self-organization ability in synthesis of self-assembled, highly organized hybrid Pt nanostructures. It is also found that the morphologies of the 2D patterned nanostructures are directly connected with the quantities of ILs. Due to the special structures of ILs-stabilized Pt nanoparticles, 2D patterned Pt nanostructures can be formed through the pi-pi stack interactions and hydrogen bonds. The resulting 2D patterned Pt nanostructures exhibit good electrocatalytic activity toward oxygen reduction.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory, we investigate the equilibrium morphologies of linear ABCBA and H-shaped (AB)(2)C(BA)(2) block copolymers in two dimensions. The triangle phase diagrams of both block copolymers are constructed by systematically varying the volume fractions of blocks A, B, and C. In this study, the interaction energies between species A, B, and C are set to be equal. Four different equilibrium morphologies are identified, i.e., the lamellar phase (LAM), the hexagonal lattice phase (HEX), the core-shell hexagonal lattice phase (CSH), and the two interpenetrating tetragonal lattice phase (TET2). For the linear ABCBA block copolymer, the reflection symmetry is observed in the phase diagram except for some special grid points, and most of grid points are occupied by LAM morphology. However, for the H-shaped (AB)(2)C(BA)(2) block copolymer, most of the grid points in the triangle phase diagram are occupied by CSH morphology, which is ascribed to the different chain architectures of the two block copolymers. These results may help in the design of block copolymers with different microstructures.
Resumo:
At the self-assembled monolayer (SAM) of a thiol-functionalized viologen modified gold electrode, cytochrome c (cyt c) exhibits a quasi-reversible electrochemical reaction. The heterogeneous electron transfer rate constant of cyt c in 0.1 mol/L phosphate buffer solution(pH 6.96) is 0.164 cm.s(-1) at 500 mV/s. The adsorbed cyt c on the viologen SAM forms a closely packed monolayer, whose average electron transfer rate is 4.85 s(-1) in the scan range of 50 to 500 mV/s. These results suggest that the SAM of viologen-thiol is a relatively stable, ordered and well-behaved monolayer from an electrochemical standpoint and it promotes the electron transfer process of biomolecules on electrode surface well.
Resumo:
The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the standard sand, clay and plastic grain as the seabed material, the influence of the bed material on the scour is studied. The relationship between the critical initial gap-to-diameter ratio above which no scour occurs and the parameters of the oscillating flow is obtained. The self-burial phenomenon. which occurs for the pipeline not fixed to two sidewalls of the test section, is not observed for the Bred pipeline. The effect of the pipe on sand wave formation is discussed. The maximum equilibrium scour depths For different initial gap-to-diameter ratios, different Kc numbers and different bed sands are also given in this paper.
Resumo:
We present a good alternative method to improve the tribological properties of polymer films by chemisorbing a long-chain monolayer on the functional polymer surface. Thus, a novel self-assembled monolayer is successfully prepared on a silicon substrate coated with amino-group-containing polyethyleneimine (PEI) by the chemical adsorption of stearic acid (STA) molecules. The formation and structure of the STA-PEI film are characterized by means of contact-angle measurement and ellipsometric thickness measurement, and of Fourier transformation infrared spectrometric and atomic force microscopic analyses. The micro- and macro-tribological properties of the STA-PEI film are investigated on an atomic force microscope (AFM) and a unidirectional tribometer, respectively. It has been found that the STA monolayer about 2.1-nm thick is produced on the PEI coating by the chemical reaction between the amino groups in the PEI and the carboxyl group in the STA molecules to form a covalent amide bond in the presence of N,N'-dicyclohexylcarbodiimide (DCCD) as a dehydrating regent. By introducing the STA monolayer, the hydrophilic PEI polymer surface becomes hydrophobic with a water contact angle to be about 105degrees. Study of the time dependence of the film formation shows that the adsorption of PEI is fast, whereas at least 24 h is needed to generate the saturated STA monolayer. Whereas the PEI coating has relatively high adhesion, friction, and poor anti-wear ability, the STA-PEI film possesses good adhesive resistance and high load-carrying capacity and anti-wear ability, which could be attributed to the chemical structure of the STA-PEI thin film. It is assumed that the hydrogen bonds between the molecules of the STA-PEI film act to stabilize the film and can be restored after breaking during sliding. Thus, the self-assembled STA-PEI thin film might find promising application in the lubrication of micro-electromechanical systems (MEMS).
Resumo:
A novel self-assembled dual-layer film as apotential excellent lubricant for micromachines was successfully prepared on single-crystal silicon substrate by chemical adsorption of stearic acid (STA) molecules on self-assembled monolayer of 3-aminopropyltri
Resumo:
Self-ignition tests of a model scramjet combustor were conducted by using parallel sonic injection of gaseous hydrogen from the base of a blade-like strut into a supersonic vitiated airstream. The range of stagnation pressure and temperature studied varied from 1.0 to 4.5 MPa and from 1300 to 2200 K, respectively. Experimental results show that the self-ignition limit, in terms of either global or local quantities of pressure and temperature, exhibits a nonmonotonic behavior resembling the classical homogeneous explosion limit of the hydrogen-oxygen system. Specifically, for a given temperature, increasing pressure from a low value can render a nonignitable mixture to first become ignitable, then nonignitable again, This correspondence shows that, despite the globally supersonic nonpremixed configuration studied herein, ignition is strongly influenced by the intricate chemical reaction mechanism and thereby exhibits the homogeneous explosion character. Consequently, self-ignition criteria based on a global reaction rate approximating the complex chemistry are inadequate. An auxiliary computational study on counterflow ignition was also conducted to systematically investigate the contamination effects of vitiated air. Results indicate that the net contamination effects for the present experimental data are expected to be substantially smaller than contributions from the individual contamination species because of the counterbalancing influences of the H2O-inhibition and NO-promotion reactions in effecting ignition.
Resumo:
The assumption of constant rock properties in pressure-transient analysis of stress-sensitive reservoirs can cause significant errors in the estimation of temporal and spatial variation of pressure. In this article, the pressure transient response of the fractal medium in stress-sensitive reservoirs was studied by using the self-similarity solution method and the regular perturbation method. The dependence of permeability on pore pressure makes the flow equation strongly nonlinear. The nonlinearities associated with the governing equation become weaker by using the logarithm transformation. The perturbation solutions for a constant pressure production and a constant rate production of a linear-source well were obtained by using the self-similarity solution method and the regular perturbation method in an infinitely large system, and inquire into the changing rule of pressure when the fractal and deformation parameters change. The plots of typical pressure curves were given in a few cases, and the results can be applied to well test analysis.
Resumo:
In this paper, cooperative self-assembly (CSA) of colloidal spheres with different sizes was studied. It was found that a complicated jamming effect makes it difficult to achieve an optimal self-assembling condition for construction of a well-ordered stacking of colloidal spheres in a relatively short growth time by CSA. Through the use of a characteristic infrared (IR) technique to significantly accelerate local evaporation on the growing interface without changing the bulk growing environment, a concise three-parameter (temperature, pressure, and IR intensity) CSA method to effectively overcome the jamming effect has been developed. Mono- and multiscale inverse opals in a large range of lattice scales can be prepared within a growth time (15-30 min) that is remarkably shorter than the growth times of several hours for previous methods. Scanning electron microscopy images and transmittance spectra demonstrated the superior crystalline and optical qualities of the resulting materials. More importantly, the new method enables optimal conditions for CSA without limitations on sizes and materials of multiple colloids. This strategy not only makes a meaningful advance in the applicability and universality of colloidal crystals and ordered porous materials but also can be an inspiration to the self-assembly systems widely used in many other fields, such as nanotechnology and molecular bioengineering.
Resumo:
Self-ignition tests of a model scramjet combustor were conducted by using parallel sonic injection of gaseous hydrogen from the base of a blade-like strut into a supersonic airstream, The vitiated air was produced by burning H-2, O-2, and air to a stagnation temperature of 1000-2100 K and a stagnation pressure of 0.8-1.6 MPa, The effects of different parameters on the self-ignition limits were analyzed, In addition, the effects of the combustor's different wall configurations on self-ignition limits were specifically studied. It was found that the wall configurations of the combustor had a significant effect on self-ignition limits, which might have variations of 420-840 K deg in stagnation temperature; however, the local static temperature in the recirculation zones for different wall configurations remained the same at approximately 1100 K, It was found that self-ignition could initiate at the exit of the combustor and this can be considered as a weak self-ignition characteristic.
Resumo:
This paper aims at investigating the size-dependent self-buckling and bending behaviors of nano plates through incorporating surface elasticity into the elasticity with residual stress fields. In the absence of external loading, positive surface tension induces a compressive residual stress field in the bulk of the nano plate and there may be self-equilibrium states corresponding to the plate self-buckling. The self-instability of nano plates is investigated and the critical self-instability size of simply supported rectangular nano plates is determined. In addition, the residual stress field in the bulk of the nano plate is usually neglected in the existing literatures, where the elastic response of the bulk is often described by the classical Hooke’s law. The present paper considered the effect of the residual stress in the bulk induced by surface tension and adopted the elasticity with residual stress fields to study the bending behaviors of nano plates without buckling. The present results show that the surface effects only modify the coefficients in corresponding equations of the classical Kirchhoff plate theory.
Resumo:
In this paper, we briefly summarize two typical morphology characteristics of the self-organized void array induced in bulk of fused silica glass by a tightly focused femtosecond laser beam, such as the key role of high numerical aperture in the void array formation and the concentric-circle-like structure indicated by the top view of the void array. By adopting a physical model which combines the nonlinear propagation of femtosecond laser pulses with the spherical aberration effect (SA) at the interface of two mediums of different refractive indices, reasonable agreements between the simulation results and the experimental results are obtained. By comparing the fluence distributions of the case with both SA and nonlinear effects included and the case with only consideration of SA, we suggest that spherical aberration, which results from the refractive index mismatch between air and fused silica glass, is the main reason for the formation of the self-organized void array. (c) 2008 American Institute of Physics.
Resumo:
The propagation of the fast muon population mainly due to collisional effect in a dense deuterium-tritium (DT for short) mixture is investigated and analysed within the framework of the relativistic Fokker-Planck equation. Without the approximation that the muons propagate straightly in the DT mixture, the muon penetration length, the straggling length, and the mean transverse dispersion radius are calculated for different initial energies, and especially for different densities of the densely compressed DT mixture in our suggested muon-driven fast ignition (FI). Unlike laser-driven FI requiring super-high temperature, muons can catalyze DT fusion at lower temperatures and may generate an ignition sparkle before the self-heating fusion follows. Our calculation is important for the feasibility and the experimental study of muon-driven FI.
Resumo:
We experimentally demonstrate that high-power femtosecond pulses can be compressed during the nonlinear propagation in the normally dispersive solid bulk medium. The self-compression behavior was detailedly investigated under a variety of experimental conditions, and the temporal and spectral characteristics of resulted pulses were found to be significantly affected by the input pulse intensity, with higher intensity corresponding to shorter compressed pulses. By passing through a piece of BK7 glass, a self-compression from 50 to 20 fs was achieved, with a compression factor of about 2.5. However, the output pulse was observed to be split into two peaks when the input intensity is high enough to generate supercontinuum and conical emission. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In underdense plasmas, the transverse ponderomotive force of an intense laser beam with Gaussian transverse profile expels electrons radially, and it can lead to an electron cavitation. An improved cavitation model with charge conservation constraint is applied to the determination of the width of the electron cavity. The envelope equation for laser spot size derived by using source-dependent expansion method is extended to including the electron cavity. The condition for self-guiding is given and illuminated by an effective potential for the laser spot size. The effects of the laser power, plasma density and energy dissipation on the self-guiding condition are discussed.