43 resultados para space requirements
Resumo:
For the first time to our knowledge, in a high-energy laser facility with an output energy of 454.37 J, by using a temporal-space-transforming pulse-shaping system with our own design of a knife-edge apparatus, we obtained a quasi-square laser pulse. (c) 2005 Optical Society of America.
Resumo:
从靶场反射镜架模块的机械结构设计布局所需几何空间的角度出发,根据大口径、列阵器件的特殊要求,给出符合“神光Ⅲ”装置总体技术要求的ICF靶场光束口径与列阵间隔之间的关系,得出靶场△纵、△横应满足的公式.
Resumo:
利用高功率激光装置空间滤波器小孔成像和取样光栅的衍射,设计出一套新型光路远场监测方案,并且在实验平台上进行了实验验证.实验结果表明:相对传统的远场监测方法,该远场监测系统通过侧面离轴光栅取样灵活利用空间,其调整平均误差为空间滤波器小孔直径0.9%,能够满足准直系统远场调整精度(<小孔直径5%)的要求.
Resumo:
The experiment result of Nd:YVO4 laser pumped by laser diode that was amplified by double-cladding Yb3+ fiber is reported. Stable mode-locking pulses are obtained at repetition rate of 320 MHz and the output power is 15 mW. When laser power is amplified by Yb3+- doped double-cladding fiber amplifier, its power can get to 600 mW. Based on these, experiment of double-frequency is carried out, and green laser with power of 4 mW is obtained. (c) 2007 Wiley Periodicals, Inc.
Resumo:
We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Au colloids were prepared by irradiation with a Nd:YAG laser. Au nanoparticles were characterized by absorption spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. It is found that the wavelength of the laser has no effect on the size but the number of the Au nanoparticles. By irradiating a transparent silica gel doped with gold ions with the focused laser in the gel and subsequent exposing in air, a space-selective pattern of letter "P" consisting of Au nanoparticles was observed inside the silica gel.