103 resultados para skin, extracellular matrix, poly(lactic-co-glycolic acid), collagen, tissue engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite of hydroxyapatite (HAP) surface-grafted with poly(L-lactide) (PLLA) (g-HAP) shows a wide application for bone fixation materials due to its improved interface compatibility, mechanical property and biocompatibility in our previous study. In this paper, a 3-D porous scaffold of g-HAP/poly (lactide-co-glycolide) (PLGA) was fabricated using the solvent casting/particulate leaching method to investigate its applications in bone replacement and tissue engineering. The composite of un-grafted HAP/PLGA and neat PLGA were used as controls. Their in vivo mineralization and osteogenesis were investigated by intramuscular implantation and replacement for repairing radius defects of rabbits. After surface modification, more uniform distribution of g-HAP particles but a lower calcium exposure on the surface of g-HAP/PLGA was observed. Intramuscular implantation study showed that the scaffold of g-HAP/PLGA was more stable than that of PLGA, and exhibited similar mineralization and biodegradability to HAP/PLGA at the 12-20 weeks post-surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of high-performance polymers [poly(phenylene-co-naphthalimide)s] was prepared through the Ni(0) catalytic coupling of N-(4-chloro-2-trifluromethylphenyl)-5-chloro-1,8-naphthalimide and 2,5-dichlorobenzophenone. The resulting copolymers exhibited high molecular weights (high inherent viscosities) and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and mechanical properties. The glass-transition temperatures of the copolymers ranged from 320 to 403 degrees C and increased as the content of the naphthalimide moiety increased. Tough polymer films, obtained via casting from N-methylpyrrolidone solutions, had tensile strengths of 64-107 MPa and tensile moduli of 3.4-4.7 GPa. The gas permeability coefficients of the copolymers were measured for H-2, CO2, O-2, CH4, and N-2. They showed oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen (permeability coefficient for O-2/permeability coefficient for N-2) in the ranges of 1.39-4.31 and 4.92-5.38 barrer, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel third-generation biosensor for hydrogen peroxide (H2O2) was developed by self-assembling gold nanoparticles to hollow porous thiol-functionalized poly(divinylbenzene-co-acrylic acid) (DVB-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in hollow porous thiol-functionalized poly(DVB-co-AA) nanosphere latex to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups of the nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The resulting biosensor showed a wide linear range of 1.0 mu M-8.0 mM and a detection limit of 0.5 mu M estimated at a signal-to-noise ratio of 3. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of two kinds of commercial poly(propylene-co-ethylene)s (PPE1, PPE2) with similar average molecular weight and molecular weight distribution, isotacticity and copolymerized ethylene unit content and their fractions was investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and polarized optical microscopy (POM) techniques. The results indicate that the PPE1 isothermally crystallized films possess thicker and less cross-hatched lamellar structure than those of the PPE2. As for the fractionated samples, the thin films of low temperature (less than or equal to 90 degreesC) fractions (PPE1-80, PPE2-80) of both PPE1 and PPE2 exhibit similar crystallization behavior, while for the high temperature ( greater than or equal to 95 degreesC) fractions (PPE1-108, PPE2-108), the crystalline morphology has marked differences. Compared with PPE2-108, the PPE1-108 isothermally crystallized thin films possess thicker lamellae and less crosshatched lamellar structure, while for the fibrous crystal number, the former is less than that of the latter. The main reason to create the crystallization behavior differences between the two PPEs and their fractions is due to the effect of molecular chain structure, i.e. the different distribution of copolymerized ethylene unit in polypropylene chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the gamma-form crystal on the thermal fractionation of a commercial poly(propylene-co-ethylene) (PPE) has been studied by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) techniques. Two thermal fractionation techniques, stepwise isothermal crystallization (SIC) and successive self-nucleation and annealing (SSA), have been used to characterize the molecular heterogeneity of the PPE. The results indicate that the SSA technique possesses a stronger fractionation ability than that of the SIC technique. The heating scan of the SSA fractionated sample exhibits 12 endothermic peaks, whereas the scan of the SIC fractionated sample only shows eight melting peaks. The WAXD observations of the fractionated PPE samples prove that the content of the gamma-form crystals formed during the thermal treatment of the SIC technique is much higher than that of the SSA treatment. The former is 57.4%, whereas the later is 12.6%. The effect of they-form crystals on thermal fractionation ability is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new kind of polyfluorene containing oxadiazole as the side chain was synthesized. The introduction of oxadiazole moiety as more bulky group prevents the aggregation and reduces the crystallinity of the polymers. Efficient intramolecular energy transfer from oxadiazole moiety to the conjugated backbone has been realized, leading to 70% improvement of photoluminescence quantum efficiency of the designed polymers. Compared with PAF, the PFOXD exhibits significant improvement in electroluminescence properties, with luminous efficiency of 0.8 cd/A and maximum luminance of 1800 cd/m(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene-co-propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR-graft-GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR-graft-GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR-graft-GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR-graft-GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR-graft-GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR-graft-GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR-graft-GMA1.3 blend (1.3 indicates degree of grafting).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pressure-dependent glass-transition temperatures (T-g's) of poly(methyl methacrylate) (PMMA)/poly(styrene-co-acrylonitrile) (SAN) blends were determined by pressure-volume-temperature (PVT) dilatometry via an isobaric cooling procedure. The Gordon-Taylor and Fox equations were used to evaluate the relationships between the T-g's and compositions of the PMMA/SAN system at different pressures. The relationships were well fitted by the Gordon-Taylor equation, and the experimental data for T-g positively deviated from the values calculated with the Fox equation. Also, the influence of the cooling rate (during the PVT measurements) on T-g was examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 degreesC/min. The WAXD experiments proved that only alpha-form crystal was formed during SIC process and no transition from alpha1- to alpha2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only,two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into gamma-form crystal having a low melting temperature whereas the long sequences crystallized into alpha-form crystal having high melting temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Themorphologies and structures of single crystals of syndiotactic poly(propene-co-1-butene) (PPBU) with 1-butene contents of 2.6, 4.2, 9.9, 16.2, and 47.9 mol % are studied by transmission electron microscopy and electron diffraction. The electron diffraction results show that the 1-butene units are included in the crystalline phase of the sPP homopolymer. A small amount of 1-butene (<4.2 mol %) has no significant influence on the antichiral chain packing of sPP. With increasing content of 1-butene units, an increasing packing disorder is observed in the PPBU copolymers. The antichiral packing model is, however, always the predominant chain packing structure of the copolymers with the analyzed composition. Bright-field electron microscopy observation shows that the PPBU single crystals exhibit always regular rectangular or lathlike shapes with preferred growth direction along their crystallographic b-axes owing to their packing features. The incorporated 1-butene units influence the crystallization behavior of sPP distinctly. With the increase of the 1-butene units, the aspect ratio of the single crystals increases. Furthermore, the typical transverse microcracks and ripples of the highly stereoregular sPP are no more so prominent for the copolymers. The microcracks are occasionally observed in the single crystals of copolymers with low 1-butene content (less than or equal to4.2 mol %), while transverse ripples are only seen in the crystals of the copolymer having a 1-butene content of 9.9 mol %. With a further increase in the content of 1-butene units, the copolymers behave like the low stereoregular sPP, where neither cracks nor ripples are observed any more.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To obtain a novel support with practical value for metallocene catalyst (eta -C5H5)TiCl3 (CpTiCl3), poly (styrene-co-4-vinylpyridine) /SiO2 nanoscale hybrid material (SrP/SiO2) was firstly produced as support. After pretreatment by methylaluminoxane (MAO), the hybrid materials reacted with CpTiCl3. The results from SAXS, SEM and TEM indicated the morphology and structure of organic/inorganic hybrid materials, and the size of inorganic particle in hybrid was nanoscale. The results from IR and XPS showed that there were two possible cationic active species in the hybrid-supported catalyst, the polymerization results of styrene proved this possibility.