309 resultados para sensori, sci, angoli articolari, cinematica
Resumo:
Fuzzy sets in the subject space are transformed to fuzzy solid sets in an increased object space on the basis of the development of the local umbra concept. Further, a counting transform is defined for reconstructing the fuzzy sets from the fuzzy solid sets, and the dilation and erosion operators in mathematical morphology are redefined in the fuzzy solid-set space. The algebraic structures of fuzzy solid sets can lead not only to fuzzy logic but also to arithmetic operations. Thus a fuzzy solid-set image algebra of two image transforms and five set operators is defined that can formulate binary and gray-scale morphological image-processing functions consisting of dilation, erosion, intersection, union, complement, addition, subtraction, and reflection in a unified form. A cellular set-logic array architecture is suggested for executing this image algebra. The optical implementation of the architecture, based on area coding of gray-scale values, is demonstrated. (C) 1995 Optical Society of America
Resumo:
The concept of an extended fractional Fourier transform (FRT) is suggested. Previous PBT's and complex FRT's are only its subclasses. Then, through this concept and its method, we explain the physical meaning of any optical Fresnel diffraction through a lens: It is just an extended FRT; a lens-cascaded system can equivalently be simplified to a simple analyzer of the FRT; the two-independent-parameter FRT of an object illuminated with a plane wave can be readily implemented by a lens of arbitrary focal length; when cascading, the Function of each lens unit and the relationship between the adjacent ones are clear and simple; and more parameters and fewer restrictions on cascading make the optical design easy. (C) 1997 Optical Society of America.
Resumo:
A reversible electrochromic effect accompanying domain-inversion during the electrical poling process in LiNbO3: Ru: Fe crystals at room temperature has been observed. In electrode area, both electrochromism and domain-inversion occur alternately, and electrochromism is also reversible during back-switch poling, which is experimentally verified and whose mechanism is briefly explained using a microstructure ferroelectric model. In addition, because of the enhancing elcctrochromic effect, different from the undoped LiNbO3 crystals, the coercive riled (21.0 kV/mm or so) measured in LiNbO3: Ru: Fe is lower than its breakdown field, thus providing a possible new technique for realizing the domain-inversion by constant electric field rather than a pulsed one.
Resumo:
When a Dammann grating is used to split a beam of femtosecond laser pulses into multiple equal-intensity beams, chromatic dispersion will occur in beams of each order of diffraction and with different scale of angular dispersion because the incident ultrashort pulse contains a broad range of spectral bandwidths. We propose a novel method in which the angular dispersion can be compensated by positioning an m-time-density grating to collimate the mth-order beam that has been split, producing an array of beams that are free of angular dispersion. The increased width of the compensated output pulses and the spectral walk-off effect are discussed. We have verified this approach theoretically and validated it through experiments. It should be highly interesting in practical applications of splitting femtosecond laser pulses for pulse-width measurement, pump-probe measurement, and micromachining at multiple points. (c) 2005 Optical Society of America.
Resumo:
Complex pupil filters are introduced to improve the three-dimensional resolving power of an optical imaging system. Through the design of the essential parameters of such filters, the transmittance and radius of the first zone, three-dimensional superresolution is realized. The Strehl ratio and the transverse and axial gains of such filters are analyzed in detail. A series of simulation examples of such filters are also presented that prove that three-dimensional superresolution can be realized. The advantage of such filters is that it is easy to realize three-dimensional superresolution, and the disadvantage is that the sidelobes of the axial intensity distribution are too high. But this can be overcome by the application of a confocal system. (C) 2005 Optical Society of America.
Resumo:
We describe high-efficiency, high-dispersion reflection gratings fabricated in bulk fused Silica illuminated by incident lights in the C + L bands as (de)multiplexers for dense wavelength division multiplexing (DWDM) application. Based on the phenomenon of total internal reflection, gratings with optimized profile parameters exhibit diffraction efficiencies of more than 90% under TM- and TE-polarized incident lights for 101-nm spectral bandwidths (1520-1620 nm) and can reach an efficiency of greater than 97% for both polarizations at a wavelength of 1550 nm. Without loss of metal absorption, without coating of dielectric film layers, and independent of tooth shape, this new kind of grating should be of great interest for DWDM application. (C) 2005 Optical Society of America.
Resumo:
The term "polarization-dependent Talbot effect" means that the Talbot self-imaging intensity of a high-density grating is different for TE and TM polarization modes. Numerical simulations with the finite-difference time-domain method show that the polarization dependence of the Talbot images is obvious for gratings with period d between 2 lambda and 3 lambda. Such a polarization-dependent difference for TE and TM polarization of, a high-density grating of 630 lines/mm (corresponding to d/lambda = 2.5) is verified through experiments with the scanning near-field optical microscopy technique, in which a He-Ne laser is used as its polarization is changed from the TE mode to the TM mode. The polarization-dependent Talbot effect should help us to understand more clearly the diffraction behavior of a high-density grating in nano-optics and contribute to wide application of the Talbot effect. (c) 2006 Optical Society of America.
Resumo:
Based on a modified coupled wave theory, the pulse shaping properties of volume holographic gratings (VHGs) in anisotropic media VHGs are studied systematically. Taking photorefractive LiNbO3 crystals as an example, the combined effect that the grating parameters, the dispersion and optical anisotropy of the crystal, the pulse width, and the polarization state of the input ultrashort pulsed beam (UPB) have on the pulse shaping properties are considered when the input UPB with arbitrary polarization state propagates through the VHG. Under the combined effect, the diffraction bandwidth, pulse profiles of the diffracted and transmitted pulsed beams, and the total diffraction efficiency are shown. The studies indicate that the properties of the shaping of the o and e components of the input UPB in the crystal are greatly different; this difference can be used for pulse shaping applications. (c) 2006 Optical Society of America.
Resumo:
The Talbot effect of a grating with different kinds of flaws is analyzed with the finite-difference time-domain (FDTD) method. The FDTD method can show the exact near-field distribution of different flaws in a high-density grating, which is impossible to obtain with the conventional Fourier transform method. The numerical results indicate that if a grating is perfect, its Talbot imaging should also be perfect; if the grating is distorted, its Talbot imaging will also be distorted. Furthermore, we evaluate high-density gratings by detecting the near-field distribution with the scanning near-field optical microscopy technique. Experimental results are also given. (c) 2005 Optical Society of America.
Resumo:
The three-dimensional coupled wave theory is extended to systematically investigate the diffraction properties of finite-sized anisotropic volume holographic gratings (VHGs) under ultrashort pulsed beam (UPB) readout. The effects of the grating geometrical size and the polarizations of the recording and readout beams on the diffraction properties are presented, in particular under the influence of grating material dispersion. The wavelength selectivity of the finite-sized VHG is analyzed. The wavelength selectivity determines the intensity distributions of the transmitted and diffracted pulsed beams along the output face of the VHG. The distortion and widening of the diffracted pulsed beams are different for different points on the output face, as is numerically shown for a VHG recorded in a LiNbO3 crystal. The beam quality is analyzed, and the variations of the total diffraction efficiency are shown in relation to the geometrical size of the grating and the temporal width of the readout UPB. In addition, the diffraction properties of the finite-sized and one-dimensional VHG for pulsed and continuous-wave readout are compared. The study shows the potential application of VHGs in controlling spatial and temporal features of UPBs simultaneously. (C) 2007 Optical Society of America
Resumo:
Optical frequency domain phase conjugation (FDPC) is based on phase conjugation of spectrum of an input signal. It is equivalent to the phase conjugation and the time reversal of the temporal envelope of an input signal. The use of FDPC to control polarization signal distortion in birefringent optical fiber systems is proposed. Evolution of polarization signals in the system using midway FDPC is analyzed theoretically and simulated numerically. It is shown that the distortion of polarization signals can be controlled effectively by FDPC. The impairments due to dispersion and nonlinear effects can be suppressed simultaneously.
Resumo:
Beam splitting of low-contrast rectangular gratings under second Bragg angle incidence is studied. The grating period is between lambda and 2 lambda. The diffraction behaviors of the three transmitted propagating orders are illustrated by analyzing the first three propagating grating modes. From a simplified modal approach, the design conditions of gratings as a high-efficiency element with most of its energy concentrated in the -2nd transmitted order (similar to 90%) and of gratings as a 1 x 2 beam splitter with a total efficiency over 90% are derived. The grating parameters for achieving exactly the splitting pattern by use of rigorous coupled-wave analysis verified the design method. A 1 x 3 beam splitter is also demonstrated. Moreover, the polarization-dependent diffraction behaviors are investigated, which suggest the possibility of designing polarization-selective elements under such a configuration. The proposed concept of using the second Bragg angle should be helpful for developing new grating-based devices. (C) 2008 Optical Society of America.
Resumo:
The multilayer coupled wave theory is extended to systematically investigate the diffraction properties of multilayer volume holographic gratings (MVHGs) under ultrashort laser pulse readout. Solutions for the diffracted and transmitted intensities, diffraction efficiency, and the grating bandwidth are obtained in transmission MVHGs. It is shown that the diffraction characteristics depend not only on the input pulse duration but also on the number and thickness of grating layers and the gaps between holographic layers. This analysis can be implemented as a useful tool to aid with the design of multilayer volume grating-based devices employed in optical communications, pulse shaping, and processing. (C) 2008 Optical Society of America
Resumo:
Static optical transmission is restudied by postulation of the optical path as the proper element in a three-dimensional Riemannian manifold (no torsion); this postulation can be applied to describe the light-medium interactive system. On the basis of the postulation, the behaviors of light transmitting through the medium with refractive index n are investigated, the investigation covering the realms of both geometrical optics and wave optics. The wave equation of light in static transmission is studied modally, the postulation being employed to derive the exact form of the optical field equation in a medium (in which the light is viewed as a single-component field). Correspondingly, the relationships concerning the conservation of optical fluid and the dynamic properties are given, and some simple applications of the theories mentioned are presented.