53 resultados para safer speeds
Resumo:
The design and fabrication of a high speed, 12-channel monolithic integrated CMOS optoelectronic integrated circuit(OEIC) receiver are reported.Each channel of the receiver consists of a photodetector,a transimpedance amplifier,and a post-amplifier.The double photodiode structure speeds up the receiver but hinders responsivity.The adoption of active inductors in the TIA circuit extends the-3dB bandwidth to a higher level.The receiver has been realized in a CSMC 0.6μm standard CMOS process.The measured results show that a single channel of the receiver is able to work at bit rates of 0.8~1.4Gb/s. Altogether, the 12-channel OEIC receiver chip can be operated at 15Gb/s.
Resumo:
砷是毒性最强的元素之一,水体中砷的污染己经引起人们广泛的关注。我国的新疆、内蒙、山西和台湾等省和地区地下水砷含量严重超标。全球共有5,000多万人遭受高砷饮用水的威胁,其中中国有1,500多万,是饮用水砷污染最严重的国家之一。WHO推荐饮用水砷的最高允许浓度从原来的50 µg•L-1已降至10 µg•L-1。更为严格的砷卫生标准的颁布,对作为饮用水源的地下水中的砷去除工艺提出了更高的要求。吸附法除砷比膜法、混凝法和离子交换法更安全、简便,是砷去除工艺中最有效的方法之一。 首先,本研究通过优化制备条件(包括炭种类的选择、炭的粒径大小、还原剂的浓度及滴定速率、反应温度、铁盐的种类及浓度、分散剂的比例及浓度),制备了负载型纳米铁。考虑到砷的去除效率、工程应用的可行性以及经济性,最优的制备条件如下:选用粒径为20~40目煤质炭,在室温、一定的分散剂比例及浓度,0.2 M KBH4滴速为20 d•min-1时所制备的Fe/炭为82.0 mg•g-1;纳米铁在活性炭孔内呈针状,其直径为30~500 nm,长度为1,000~2,000 nm。绝大多数的铁都负载到活性炭内部,这在处理水时铁不流失很重要。 其次,利用制备的负载型纳米铁作吸附载体,进行了饮用水中As(Ⅴ)的吸附去除实验。研究了该吸附剂对As(Ⅴ)的吸附等温线、动力学以及影响动力学的各种因素(包括As(Ⅴ)的不同初始浓度、吸附剂用量、pH值、共存离子和不同温度)、pH值、共存离子等环境条件对As(Ⅴ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现在前12 h内吸附较快,72 h时达到了平衡。用Langmuir 吸附等温式估算出As(Ⅴ)的吸附量为12.0 mg•g-1。该吸附剂在pH 6.5, (25±2)℃, As(Ⅴ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时,As(Ⅴ)的去除率为75.2%;当把吸附剂的用量增加到1.5 g•L-1时,As(Ⅴ)的去除率可达99.9%以上。吸附剂可以用0.1M的NaOH浸泡12 h后即可再生,再生效率较高。常见的阴离子中PO43-、SiO32-对As(Ⅲ)的去除抑制较大,而SO42-、CO32-、C2O42-等离子对砷的去除影响较小。Fe2+对As(Ⅲ)的吸附抑制作用较大而其它阳离子影响不大。吸附剂可用0.1 M NaOH 有效再生,并且具有良好的机械性能。实验室初步实验数据表明,该吸附剂对饮用水除砷具有较好的应用前景。 第三,利用实验室制备的负载型纳米铁对饮用水中As(Ⅲ)的吸附去除也进行了研究。考察了吸附等温线、动力学以及影响动力学的各种因素、pH值、共存离子等环境条件对As(Ⅲ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现,该吸附剂在pH 6.5, (25±2)℃, As(Ⅲ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时, 对As(Ⅲ)的去除率为99.8%;其吸附容量为1.996mg•g-1。吸附过程中部分As(Ⅲ)被氧化。与As(Ⅴ)的吸附相比,该吸附剂对As(Ⅲ)的效率比较高-而常见的其它除砷吸附剂如载铁纤维棉等,对As(Ⅴ)的效率比As(Ⅲ)高,为有效去除As(Ⅲ),常常需要专门加上氧化这一过程。 最后,利用负载型纳米铁对饮用水中As(Ⅲ) 的氧化性能进行考察,发现该吸附剂不但能够有效吸附去除饮用水中的砷,而且还能把As(Ⅲ)有效地氧化为As(Ⅴ)。经过对吸附剂的构成组分分析发现,活性炭表面因富含多种官能团而对三价砷的氧化作用最大;其次是纳米铁也能把As(Ⅲ)氧化为As(Ⅴ)。
Resumo:
Propulsion characteristics of wing-in-ground effect propulsors were investigated using a comparative analysis of thrust and powering characteristics between wing-in-ground (WIG) effect thrusters and traditional screw propellers. WIG thrusters were found to have constant thrust production and efficiency, nearly independent of speed of advance, as contrary to screw propellers, whose optimum efficiency occurs at only one speed point. To produce the same amount of thrust as equivalent screw propellers, WIG thrusters have to work under heavily loaded operating conditions. WIG thrusters were also found to produce a relatively lower but nearly constant efficiency and thrust, independent of speed. Another distinguishing propulsion characteristic revealed for WIG thrusters is that they are capable of operating at much higher speeds, in a range of three to six times that of screw propellers of the same size. While the speed range of screw propellers is mainly limited by their geometric pitch, the speed range of WIG thrusters has no speed limit in ideal fluid. In reality, the speed range is only limited by viscous drag and cavitation, or compressibility, in water or air, respectively. This suggests a potential for WIG thrusters of higher speed application than screw propellers. An experimental investigation and validation of the propulsion system is warranted. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
The vertical growth of seagrasses in response to burial by migration of bedforms is combined with dating techniques to provide precise and rapid estimates of the migration speed of subaqueous dunes over seagrass patches. Two methods to estimate the time interval between the passage of successive dunes and the motion of single dunes through seagrass patches are described. The second method is more precise. The application of these methods to vegetated (Cymodocea nodosa) subaqueous dunes in the Alfacs Bay (NW Mediterranean) showed that the dunes traveled at an average speed of $13.0 \pm 0.6 m yr^-1$ and demonstrated that the methods can resolve migration speeds from 0.15 to $980 m yr^-1$ with this particular seagrass species. In areas vegetated with different seagrass species, bedform migration can be estimated over different time scales. The strong coupling between seagrass and sediment dynamics resembles the coupling of vegetation and land dunes.
Resumo:
Geoacoustic properties of the seabed have a controlling role in the propagation and reverberation of sound in shallow-water environments. Several techniques are available to quantify the important properties but are usually unable to adequately sample the region of interest. In this paper, we explore the potential for obtaining geotechnical properties from a process-based stratigraphic model. Grain-size predictions from the stratigraphic model are combined with two acoustic models to estimate sound speed with distance across the New Jersey continental shelf and with depth below the seabed. Model predictions are compared to two independent sets of data: 1) Surficial sound speeds obtained through direct measurement using in situ compressional wave probes, and 2) sound speed as a function of depth obtained through inversion of seabed reflection measurements. In water depths less than 100 m, the model predictions produce a trend of decreasing grain-size and sound speed with increasing water depth as similarly observed in the measured surficial data. In water depths between 100 and 130 m, the model predictions exhibit an increase in sound speed that was not observed in the measured surficial data. A closer comparison indicates that the grain-sizes predicted for the surficial sediments are generally too small producing sound speeds that are too slow. The predicted sound speeds also tend to be too slow for sediments 0.5-20 m below the seabed in water depths greater than 100 m. However, in water depths less than 100 m, the sound speeds between 0.5-20-m subbottom depth are generally too fast. There are several reasons for the discrepancies including the stratigraphic model was limited to two dimensions, the model was unable to simulate biologic processes responsible for the high sound-speed shell material common in the model area, and incomplete geological records necessary to accurately predict grain-size
Resumo:
The reversible fabrication of positive and negative nanopatterns on 1-hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) was realized by bias-assisted atomic force microscopy (AFM) nanolithography using an ethanol-ink tip. The formation of positive and negative nanopatterns via the bias-assisted nanolithography depends solely on the polarity of the applied bias, and their writing speeds can reach 800,um/s and go beyond 1000 mu m/s, respectively. The composition of the positive nanopatterns is gold oxide and the nanometer-scale gold oxide can be reduced by ethanol to gold, as proved by X-ray photoelectron spectroscopy (XPS) analysis, forming the negative nanopatterns which can be refilled with HDT to recover the SAMs.
Resumo:
Nonviral vectors are safer than viral systems for gene therapy applications. However, the limited efficacy always prevents their being widely used in clinical practice. Aside from searching new gene nonviral vectors, many researchers focus on finding out new substances to improve the transfection efficiency of existent vectors. In this work, we found a transfection enhancer, nocodazole (NCZ), for dimethyldioctadecylammonium (DODAB, a cationic lipid) bilayer coated gold nanoparticles (AuNPs) mediated gene delivery. It was found that NCZ produces 3-fold transfection enhancement to HEK 293T cells assessed by flow cytometry (FCM). The result was further confirmed by luciferase assay, in which NCZ induced more than 5 times improvement in transfection efficiency after 48 h of transfection. The results from the inductively coupled plasma mass spectrometry (ICP-MS) and FCM showed that NCZ did not affect the internalization of DODAB-AuNPs/DNA complexes. The trafficking of the complexes by transmission electron microscopy (TEM) indicated that the interrupted transportation of the complexes to the lysosomes contributed greatly to the transfection enhancement.
Resumo:
Two series of tensile tests with constant crosshead speeds (ranging from 5 to 200 mm/min) and tensile relaxation tests (at strains from 0.03 to 0.09) were performed on low-density polyethylene in the subyield region of deformations at room temperature. Mechanical tests were carried out on nonannealed specimens and on samples annealed for 24 h at the temperatures T = 50, 60, 70, 80, and 100 degreesC. Constitutive equations were derived for the time-dependent response of semicrystalline polymers at isothermal deformations with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical crosslinks, and lamellar blocks). The network is thought of as an ensemble of mesoregions linked with each other. The viscoelastic behavior of a polymer is modeled as a thermally induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects sliding of junctions in the network with respect to their reference positions driven by macrostrains. Stress-strain relations involve five material constants that were found by fitting the observations.
Resumo:
Three series of tensile tests with constant cross-head speeds (ranging from 5 to 200 mm/min), tensile relaxation tests (at strains from 0.03 to 0.09) and tensile creep tests (at stresses from 2.0 to 6.0 MPa) are performed on low-density polyethylene at room temperature. Constitutive equations are derived for the time-dependent response of semicrystalline polymers at isothermal deformation with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical cross-links and lamellar blocks). The network is thought of as an ensemble of meso-regions linked with each other. The viscoelastic behavior of a polymer is modelled as thermally-induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects mutual displacement of meso-domains driven by macro-strains. Stress-strain relations for uniaxial deformation are developed by using the laws of thermodynamics. The governing equations involve five material constants that are found by fitting the observations. Fair agreement is demonstrated between the experimental data and the results of numerical simulation.
Resumo:
Recent investigations show that normalized radar cross sections for C-band microwave sensors decrease under high wind conditions with certain incident angles instead of increase, as is the case for low to moderate wind speeds. This creates the problem of ambiguities in high wind speed retrievals from synthetic aperture radar (SAR). In the present work, four geophysical model functions (GMFs) are studied, namely the high wind C-band model 4 (CMOD4HW), C-band model 5 (CMOD5), the high wind vertical polarized GMF (HWGMF_VV), and the high wind horizontal polarized GMF (HWGMF_HH). Our focus is on model behaviours relative to wind speed ambiguities. We show that, except for CMOD4HW, the other GMFs exhibit the wind speed ambiguity problem. To consider this problem in high wind speed retrievals from SAR, we focus on hurricanes and propose a method to remove the speed ambiguity using the dominant hurricane wind structure.
Resumo:
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a joint statistical distribution of two-point sea surface elevations is derived by using the characteristic function expansion method. It is found that the joint distribution depends on five parameters. These five parameters can all be determined by the water depth, the relative position of two points and the wave-number spectrum of ocean waves. As an illustrative example, for fully developed wind-generated sea, the parameters that appeared in the joint distribution are calculated for various wind speeds, water depths and relative positions of two points by using the Donelan and Pierson spectrum and the nonlinear effects of sea waves on the joint distribution are studied. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a statistical distribution of the wave-surface elevation is derived by using the characteristic function expansion method. It is found that the distribution, after normalization of the wave-surface elevation, depends only on two parameters. One parameter describes the small mean bias of the surface produced by the second-order wave-wave interactions. Another one is approximately proportional to the skewness of the distribution. Both of these two parameters can be determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, we consider a fully developed wind-generated sea and the parameters are calculated for various wind speeds and water depths by using Donelan and Pierson spectrum. It is also found that, for deep water, the dimensionless distribution reduces to the third-order Gram-Charlier series obtained by Longuet-Higgins [J. Fluid Mech. 17 (1963) 459]. The newly proposed distribution is compared with the data of Bitner [Appl. Ocean Res. 2 (1980) 63], Gaussian distribution and the fourth-order Gram-Charlier series, and found our distribution gives a more reasonable fit to the data. (C) 2002 Elsevier Science B.V. All rights reserved.