33 resultados para rolling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex fault block reservoir is very important type in chinese oilfield.The reservoir have for many years and it has been the important issue of oil-gas exploration and development in china that how to increase reserves and production. Therefore,taking the Pucheng-oil field as an example, the article intensive study the geologic feature of oil pool, correctly recognize the rule of oil-gas accumulation and based on the fine representation of the characteristic of reservoir, research the remaining oil in high developed area,which is important for progressive exploratioon and development and taping the remaining oil. The article multipurpose uses the data of geology,drilling,wellloging, analysis and assay and so on, under the guidance multi-disciplinary theory, intensify the comprehension of the geologic feature of oil pool in high developed oil field. Based on the high-resolution sequence stratigraphic framework ,the article points out that Es_2 upper 2+3 reservoir in the south area of Pucheng oilfield is in the depositional environment of Terminal Fan, which has constant supply of sedimentary source ,and build the sedimentation model. Studies have shown that the major reservoir in work area is the distributary channel sandbody in central Sub-facies of Terminal Fan,secondary is both lateral accretion sandbodies of channel sands,nearby and far away from the channel overflowing sandbodies in front of the fan. The article analyze the effect of depth of burial of the reservoir, sandstone structure, strata pressure and bioturbate structure on control action of physical property for reservoir and indicate that deposition and diagenesis are major controlling factors.By building the model of reservoir heterogeneity, the article show the magnitude of reservoir heterogeneity ,the genesis and identification mark of Interlayer and build the the model of interlayer. in this area the vertical distribution of interlayer is complicated,but the intraed interlayer distribute steady. Thick interlayer is steady and the thin is relatively spreaded. By building models of fault sealing,stress field and fluid potential field of the south of the pucheng oil field, the regular pattern of fluid migration and accumulation runs out. By researching the elements of oil accumulation, migration pathway and accumulation period with quantification and semiquantitative methods,we bulit the oil-gas reservoir-forming mode of the south of the pucheng oil field,which will be the foundation of the rolling exploratory development in the future. We promulgated the master control element and the rule of distribution of the remaining oil with the upside 2+3 oil layer in shaer in the south of the pucheng oil field as an example.In this area, the formation and the distribution of the remaining oil is controled by the sedimentary microfacies, reservoir heterogeneity,fault and reservoir engineering. The remaining oil is concentrated in the vicinity of the gas cap, updip of the fault block and the area with incomplete flooding. Remaining oil saturation in some area can get 50%, so there are many places in which we can enhance oil recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central uplift in the Huimin depression is famous for its large amounts of faults and small-scale fault-block area, and it is the famed typical complicated fault-block group oil & gas field in the whole world. After many years of rolling exploration and exploitation, many complex oil &gas field have been discovered in the central uplift, and won the splendent fruit. With the gradual deepening and development of the rolling exploitation, the exploration faces more and more difficulties. Therefore, it is important to reveal the forming mechanism and distributing rule of the complex fault-block reservoir, and to realize the forecast of the complex fault-block reservoir, sequentially, expedite the exploration step. This article applies the new multi-subject theory, method and technique such as structure geometry, kinematics, dynamics, structural stress field, fluid potential field, well logging record and constrained inversion of seismic records, coherence analysis, the seal mold and seal history of oil-bounded fault etc, and try to reveal the forming mechanism and distributing law of the complex fault-block reservoir, in result, implements the forecast of the fault-block reservoir and the remaining oil distributing. In order to do so, this article synthetically carries out structural estimate, reservoir estimate, fault sealing history estimate, oil-bearing properties estimate and residual. This article also synthetically researches, describes and forecast the complex fault-block in Huimin depression by use of the techniques, e.g. seismetic data post-stack processing technique, multi-component demarcating technique, elaborate description technique for the fault-block structure, technique of layer forecasting, fault sealing analysis technique, comprehensive estimate technique of fault-block, comprehensive analysis and estimate technique of remaining oil etc. The activities of the faults varies dramatically in the Huimin depression, and most of the second-class and the third-class faults are contemporaneous faults, which control the macroscopical distribution of the reservoir in the Huimin depression. The fourth-class faults cause the complication between the oil & gas among the fault-blocks. The multi-period strong activities of the Linyi fracture resulted in the vertical migration of large amount of oil & gas along with the faults. This is the main reason for the long vertical distribution properties near the Linyi fracture in the Huimin depression. The sealing ability of the fault is controlled by the property,size and direction of the main stress, the contact relationship of the both sides of the fault, the shale polluting factor, and the configuration relationship between the fault move period and the migration period of oil & gas. The article suggest four fault-sealing modes in the research zone for the first time, which establishes the foundation for the further forecast of the complex fault-block reservoir. Numerical simulation of the structural stress field reveals the distribution law and the evolvement progress of the three-period stress field from the end of the Dongying period to the Guantao period to nowadays. This article puts forward that the Linyi and Shanghe regions are the low value of the maximum main stress data. This is combined with the fault sealing history estimate, then multi-forming-reservoir in the central uplift is put forward. In the Shanghe oilfield, the article establishes six reservoir geological modes and three remaining oil distributing modes(the plane, the inside layer and the interlayer), then puts forward six increase production measure to enhance the remaining oil recovery ratio. Inducting the exploitation of oilfield, it wins notable economic effects and social effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rockfall is a geological evolution process involving detachment of blocks or boulders from a slope face, then their free falls, bouncing, rolling or sliding, and finally deposition near the toe of the slope. Many facts indicate that the rockfall can cause hazards to peoples, and it can be regarded as a geological hazard. A rockfall event may only involve a boulder or rock, and also several ones. When there are peoples, buildings, or other man-made establishments within the scope of rockfall trajectory, losses will be possibly induced in tenns of human lives or damages to these facilities. Researches into mechanism, kinematics, dynamics, hazard assessment, risk analysis, and mitigation measures of rockfalls are extremely necessary and important. Occurrence of rockfall is controlled by a lot of conditions, mainly including topographical, geomorphic, geological ones and triggering factors. The rockfall especially in mountainous areas, has different origins, and occurs to be frequent, unexpected, uncertain, in groups, periodic and sectional. The characterization and classification of the rockfalls not only increase knowledge about rockfall mechanism, but also can instruct mitigation of the hazards. In addition, stability of potential rockfalls have various sensitivity to different triggering factors and changes of geometrical conditions. Through theoretical analyses, laboratory experiments and field tests, the author presents some back-analysis methods for friction coefficients of sliding and rolling, and restitution coefficients. The used input data can be obtained economically and accurately in the field. Through deep studies on hazard assessment methods and analysis of factors influencing rockfall hazard, this paper presents a new assessment methodology consisting of preliminary assessment and detailed one. From the application in a 430 km long stretch of the Highway, which is located between Paksho and Nyingtri in Tibet, the methodology can be applicable for the rockfall hazard assessment in complex and difficult terrains. In addition, risk analyses along the stretch are conducted by computing the probability of encountering rockfalls and life losses resulting from rockfall impacts. Rockfall hazards may be mitigated by avoiding hazardous areas, clearness of dangerous rocks, reinforcement, obstructing the rockfalls, leading the rockfalls, warning and monitoring for rockfalls, etc. Seen from present remedial level of rockfall hazards, different mitigation measures, economical and effective buffering units, monitoring tecliniques and consciousness of environmental protection for rockfall mitigations should be further developed.