32 resultados para reversibility


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C-2 selectivity up to 40-70% was achieved, albeit that conversion rate were low, typically 0.5-3.5% at 800-900 degreesC with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/gamma -Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm(2) min oxygen permeation flux were achieved under steady state at 850 degreesC. Methane conversion and oxygen permeation flux increased with increasing temperature, No fracture of the membrane reactor was observed during syngas production. However, H-2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875 degreesC for more than 500h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm(2) min. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ba0.5Sr0.5Co0.8Fe0.2O3-delta and Ba0.5Sr0.5Co0.8Ti0.2O3-delta oxides were synthesized by a combined EDTA-citrate complexing method. The catalytic behavior of these two oxides with the perovskite structure was studied during the reaction of methane oxidation. The pre-treatment with methane has different effect on the catalytic activities of both the oxides. The methane pre-treatment has not resulted in the change of the catalytic activity of BSCFO owing to its excellent reversibility of the perovskite structure resulting from the excellent synergistic interaction between Co and Fe in the oxide. However, the substitution with Ti on Fe-site in the lattice makes the methane pre-treatment have an obvious influence on the activity of the formed BSCTO oxide.