328 resultados para rare-earth doped glasses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the broadband infrared emission of bismuth doped and bismuth/dysprosium codoped chalcohalide glasses. It is found that the bismuth/dysprosium codoping can drastically enhance the fluorescence as compared with either bismuth or dysprosium doped glasses. Meanwhile, the full width at half maximum of bismuth/dysprosium codoped glasses is over 170 nm, which is the largest value among all the reported rare-earth doped chalcohalide glasses. An ideal way for energy consumption between bismuth and dysprosium ions is supposed. Such improved gain spectra of both bismuth and dysprosium ions may have potential applications in developing broadband fibre amplifiers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we reported the synthesis of nearly monodisperse and well-defined one-dimensional (1D) rare earth fluoride(beta-NaREF4) (RE = Y, Sm, Eu, Gd, Tb, Dy, and Ho) nanowires/nanorods by in situ acid corrosion and anion exchange approach using RE(OH)(3) as precursors via a facile hydrothermal route. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy. scanning electron microscopy (SEM), transmission electron microscopy (TEM). high-resolution transmission electron microscopy (HRTEM), and photoluminescence(PL)spectroscopy were used to characterize the samples. The results show that the as-prepared rare earth fluoride (beta-NaREF4) nanowires/nanorods preserve the basic morphology of the initial RE(OH)(3) precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M2B5O9X: Re(M = Ca, Sr, Ba; X = Cl, Br; Re = Eu, Th) phosphors were synthesized via solid state method. The products were characterized with X-ray powder diffraction and luminescence spectrometer. The luminescent properties as well. as the influences of the matrix composition and other doping ions on the luminescence of the rare earth ions of the co-doped phosphors were investigated. The coexistence of Eu3+, Eu2+ and Th3+ were observed in these matrices. The phenomenon may be explained by the electron transfer theory. The sensitization of Ce3+ ion improves the intensity of emission of Eu2+, and Tb3+. The competition between electron transfer among conjugate rare earth ions and energy migration might be the reasons for the observation. We predict a novel trichromatic phosphor co-doped with Eu3+ Tb3+ in M2B5O9X.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth ions (Eu3+ and Dy3+)-doped Gd-2(WO4)(3) phosphor films were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting powders and films. The results of XRD indicate that the films begin to crystallize at 600degreesC and the crystallinity increases with the elevation of annealing temperatures. The film is uniform and crack-free, WO(4)(2-)mainly consists of closely packed fine particles with an average grain size of 80 nm. Owing to an energy transfer from 4 groups, the rare earth ions show their characteristic emissions in crystalline Gd-2(WO4)(3) phosphor films, i.e., D-5(J) -F-7(J), (J = 0, 1, 2, 3; J' = 0 1, 2, 3, 4, not in all cases) transitions for Eu3+ and F-4(9/2)-H-6(J) (J = 13/2, 15/2) transitions for D Y3+, with the hypersensitive transitions D-5(0)-F-7(2) (Eu3+) and F-4(9/2) - H-6(13/2) (Dy3+) being the most prominent groups, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of rare earth ions doped CdSiO3:RE3+(RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) multi-color long-lasting phosphorescence phosphors are prepared by the conventional high-temperature solid-state method. The results of XRD measurement indicate that the products fired under 1050degreesC for 3 h have a good crystallization without any detectable amount of impurity phase. Rare earth ions doped CdSiO3 phosphors possess excellent luminescence properties. When rare earth ions such as Y3+, La3+, Gd3+, Lu3+, Ce3+, Nd3+, Ho3+, Er3+, Tm3+ and Yb3+ are introduced into the CdSiO3 host, one broadband centered at about 420 nm resulting from traps can be observed. In the case of other earth ions such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, their characteristic line emitting as well as the similar to420 nm broadband luminescence can be obtained. The mixture of their characteristic line emitting with the similar to420 nm broadband luminescence results in various afterglow color.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ternary complexes of europium and terbium with paraaminobenzoic acid and 1,10-phenanthroline (Eu(p-ABA)(3). phen . 2H(2)O and Tb(p-ABA)(3). phen . 2H(2)O, where p-HABA = paraaminobenzoic acid and phen = 1,10-phenanthroline) were introduced into a silica matrix by sol-gel method. The luminescence behavior of the complexes in silica gels was studied in comparison with the. corresponding solid-state complexes by means of emission, excitation spectra, and Lifetimes. Within the range of effective dopant concentrations, the luminescence intensities of rare-earth complexes in silica gel increase with the increasing of their dopant concentration. The lifetimes of rare-earth ions (Eu3+ and-Tb3+) in silica gel doped with europium and terbium complexes become longer than those in pure complexes. Very small amounts of rare-earth complexes doped in silica gel matrix can exhibit excellent luminescence properties, (C) 1998 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Electroluminescent device with PVK film doped with Eu(TTA)(3) Phen and PBD was fabricated. The device structure of glass substrate/indium-tin-oxide/PPV/PVK : Eu(TTA)3 Phen : PBD/Alq(3)/Al was employed. A sharply red electroluminescence with a maximum luminance of 56. 8 cd/m(2) at 48 V was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binary and ternary complexes of europium and terbium with conjugated carboxylic acid (nicotinic acid and 3,4-furandicarboxylic acid) and 1,10-phenanthroline were introduced into silica gel by the sol-gel method. The luminescence behavior of the complexes in silica gels was studied compared with the corresponding solid state complexes by means of emission, excitation spectra and lifetimes. The result indicated that the rare earth ions (EU3+ and Tb3+) showed fewer emission lines and slightly lower emission intensities in the silica gel than those in pure rare earth complexes. The lifetimes of rare earth ions (EU3+ and Tb3+) in silica gel doped with rare earth complexes became longer than those in pure rare earth complexes. (C) 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ternary complexes of rare earth Eu(dbm)(3).phen and Tb(acac)(3).phen (dbm = dibenzoylmethanide, acac = acetylacetone and phen = 1,10-phenanthroline) were introduced into silica gel by the sol-gel method. The result indicated that the rare earth ions (EU3+ and Tb3+) showed fewer emission lines and slightly lower emission intensities in the silica gel than in the pure rare earth complexes. The lifetimes of rare earth ions in silica gel (Eu3+ and Tb3+) doped with Eu(dbm)(3).phen and Tb(acac)(3).phen were longer than those in purl Eu(dbm)(3).phen and Tb(acac)(3).phen. A very small amount of rare earth complexes doped in a silica gel matrix can retain excellent luminescence properties. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three kinds of rare earth complexes derived from dibenzoylmethane (DBM) ligand were synthesized by reacting free ligand and different rare earth ions(La (3+), Sm3+ and Gd3+). Their contents and structures were postulated based on elemental analysis, LDI-TOF-MS, FT-IR spectra and UV-Vis spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption and reflection properties of thin film and thermal stability of these complexes were evaluated. These complexes would be a promising recording material for high-density digital versatile disc-recordable (HD-DVD-R) system. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+-doped TeO2-WO3 glass was fabricated and characterized by absorption spectrum, fluorescence spectrum, Raman spectrum and stability. The Judd-Ofelt parameter ohm(t)(t = 2, 4, 6) were calculated from the absorption spectrum by the Judd-Ofelt theory. The fluorescence spectrum indicates that the fluorescence width at half-maximum (FWHM) is 66nm. The stimulated emission cross-section of Er3+ in TeO2-WO3 glass at 1532 nm was calculated to be 0.80 x 10(-20) cm(2) by McCumber theory. The phonon energy of TeO2-WO3 glass is found to be 931 cm(-1). The difference between crystallization onset temperature and glass transition temperature Delta T is 112 degrees C. These results show that Er3+-doped TeO2-WO3 glass has higher stability and good spectral properties, which were useful for broadband amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new Er(3+)/Yb(3+) co-doped phosphate glass has been prepared, which exhibits good chemical durability and spectralproperties. Planar graded index waveguides have been fabricated in the glass by (Ag+)-Na(+) ion exchange in a mixed melt of silver nitrate and potassium nitrate. Ion exchange is carried out by varying the process parameters such as temperature, diffusion time, and molten salt compositions. The diffusion parameters, diffusion coefficients, and activation energy are determined by the guidelines of fabricated waveguides, which are determined by the input prism coupling technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er^(3+)-doped Na2O-WO3-TeO2 glass consistent with standard ion-exchange technology has been fabricated and characterized. The measured absorption and emission spectra of the glass were analyzed by the Judd-Ofelt and McCumber theories. The intensity parameters are Ω2 = 7.01

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broadband infrared luminescence is observed in various Bi-doped oxide glasses prepared by conventional melting-quenching technique. The absorption spectrum of the Bi-doped germanium oxide glass consists of five broad peaks at below 370, 500, 700, 800 and 1000 nm. The fluorescence spectrum exhibits a broad peak at about 1300 nm with full width at half maximum (FWHM) of more than 300 nm when excited by an 808 nm laser diode. The fluorescence lifetime at room temperature decreases with increasing Bi2O3 concentration. Influence of the glass composition and melting atmosphere on the fluorescence lifetime and luminescent intensity is investigated. The mechanism of the broadband infrared luminescence is suggested. The product of stimulated emission cross-section and lifetime of the Bi-doped aluminophosphate glass is about 5.0 X 10(-24) cm(2) s. The glasses might be promising for applications in broadband optical fiber amplifiers and tunable lasers. (c) 2007 Elsevier B.V. All rights reserved.