90 resultados para push-pull chromophores
Resumo:
Layered steam injection, widely used in Liaohe Oilfield at Present, is an effective recovery technique to heavy oil reserves. Which makes the steam front-peak push forward uniformly, the amount of steam injection be assigned rationally, and the effect of injection steam be obtained as expected. To maintain a fixed ratio of layered steam injection and solve the problem of nonadjustable hole diameter with the change of layer pressure in the existing injectors, a new method is proposed in this paper to design layered steam injectors based on the dynamic balance theory. According to gas-liquid two-phase flow theory and beat transfer theory, the energy equation and the heat conduction equation in boreholes are developed. By analyzing the energy equilibrium of water-steam passing through the injector hole, we find an expression to describe the relation between the cross-sectional area of injector hole and the layer pressure. With this expression, we provide a new set of calculation methods and write the corresponding computer program to design and calculate the main parameters of a steam injector. The actual measurement data show that the theoretically calculated results are accurate, the software runs reliably, and they provide the design of self-adjustable layered steam injectors with the theoretical foundation.
Resumo:
An experimental investigation will be performed on the thermocapillary motion of two bubbles in Chinese return-satellite. The experiment will study the migration process of bubble caused by thermocapillary effect in microgravity environment, and their interaction between two bubbles. The bubble is driven by the thermocapillary stress on the surface on account on the variation of the surface tension with temperature. The interaction between two bubbles becomes significant as the separation distance between them is reduced drastically so that the bubble interaction has to be considered. Recently, the problem has been discussed on the method of successive reflections, and accurate migration velocities of two arbitrarily oriented bubbles were derived for the limit of small Marangoni and Reynolds numbers. Numerical results for the migration of the two bubbles show that the interaction between two bubbles has significant influence on their thermocapillary migration velocities with a bubble approaching another. However, there is a lack of experimental validate for the theoretic results. Now the experimental facility is designed for experimenting time after time. A cone-shaped top cover is used to expel bubble from the cell after experiment. But, the cone-shaped top cover can cause temperature uniformity on horizontal plane in whole cell. Therefore, a metal board with multi-holes is fixed under the top cover. The board is able to let the temperature distribution on the board uniform because of their high heat conductivity, and the bubble can pass through it. In the system two bubbles are injected into the test cell respectively by two sets of cylinder. And the bubbles sizes are controlled by two sets of step-by-step motor. It is very important problem that bubble can be divorced from the injecting mouth in microgravity environment. Thus, other two sets of device for injecting mother liquid were used to push bubble. The working principle of injecting mother liquid is to utilize pressure difference directly between test cell and reservoir
Resumo:
Layered steam injection, widely used in Liaohe Oilfield at present, is an effective recovery technique to heavy oil reserves. Which makes the steam front-peak push forward uniformly, the amount of steam injection be assigned rationally, and the effect of injection steam be obtained as expected. To maintain a fixed ratio of layered steam injection and solve the problem of nonadjustable hole diameter with the change of layer pressure in the existing injectors, a new method is proposed in this paper to design layered steam injectors based on the dynamic balance theory According to gas-liquid two-phase flow theory and heat transfer theory, the energy equation and the heat conduction equation in boreholes are developed. By analyzing the energy equilibrium of water-steam passing through the injector hole, we find an expression to describe the relation between the cross-sectional area of injector hole and the layer pressure. With this expression, we provide a new set of calculation methods and write the corresponding computer program to design and calculate the main parameters of a steam injector. The actual measurement data show that the theoretically calculated results are accurate, the software runs reliably, and they provide the design of self-adjustable layered steam injectors with the theoretical foundation.
Resumo:
Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.
Resumo:
Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.
Resumo:
We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we investigate the adhesive contact between a rigid cylinder of radius R and a graded elastic half-space with a Young's modulus varying with depth according to a power-law, E = E-0(y/c(0))(k) (0 < k < 1), while the Poisson's ratio v remains constant. The results show that, for a given value of ratio R/C-0, a critical value of k exists at which the pull-off force attains a maximum; for a fixed value of k, the larger the ratio R/c(0), the larger the pull-off force is. For Gibson materials (i.e., k = 1 and v = 0.5), closed-form analytical solutions can be obtained for the critical contact half-width at pull-off and pull-off force. We further discuss the perfect stick case with both externally normal and tangential loads.
Resumo:
A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shock-reconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Mach number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4A degrees attack angle.
Resumo:
使用简单的爆推模型估算爆推快点火过程及其结果。首先由ns级主驱动激光直接驱动,形成中心低密度高温热斑,周围为高密度低温主燃料区,两区压力平衡(等压模型);然后用ps级超短超强激光打入,产生超热电子,其能量在低温主燃料区沉积,主燃料区发生爆炸,一部分向外飞散,一部分向内压缩中心热斑。在这个爆推模型下,热斑体积压缩比为64,中子产率将有极大的提高,相应的中子产额和能量增益得到提高。离子温度因为主燃料区质量过大,提高不大。提高超热电子能量,或者减小低温主燃料区质量,离子温度将会显著提高。不同的初始离子温度对结果
Resumo:
本文合成了3种轴向配位的萘酞菁硅配合物(NcSiR2,R=Cl、OH、OCH3),研究了3种萘酞菁配合物激发态性质,研究结果表明.随着轴向取代基推电子能力的逐渐增强,激发单线态寿命和激发三线态寿命逐渐缩短,产生单线态氧的能力逐渐下降。
Resumo:
赤霉素(gibberellins,GAs)和油菜甾醇(brassinosteroids,BRs)在细胞伸长和植株形态建成等方面发挥重要的生理作用,但它们在分子水平上的相互作用仍然未知。在本实验室前期的芯片工作中筛选到受GA诱导表达的GAST家族基因OsGSR1(GA-stimulated gene in rice) (GenBank AY604180)。该基因全长cDNA为588 bp,编码110个氨基酸,OsGSR1具有GAST家族成员的共同特点。OsGSR1基因的表达受GA3诱导,同时受PAC抑制。基因表达模式分析表明OsGSR1在水稻的根、茎、幼穗和小花等多种组织和器官中表达。前期工作已获得转基因水稻。 本论文研究表明,OsGSR1 RNAi转基因水稻表现为初生根缩短、叶片直立、节间缩短和结实率降低等与GA和BR相关的表型。OsGSR1 RNAi转基因水稻对外源GA3敏感性降低,Real-time PCR分析表明在OsGSR1 RNAi转基因水稻中OsGA20ox2和SLR1的转录水平增高,GC-MS分析显示内源GA4含量增高,这些结果说明转基因材料中GA信号削弱。因此,OsGSR1是GA信号途径的正调控因子。另一方面,实验证据表明,外源BL处理可以抑制OsGSR1基因的表达,OsGSR1 RNAi转基因水稻不但可以响应外源BL处理,并且在叶夹角实验中显现出对外源BL更加敏感的特性。在OsGSR1 RNAi转基因水稻中,BR受体基因OsBRI1与合成基因OsDWARF表达量上调。外源添加BL可以恢复OsGSR1 RNAi转基因水稻矮化表型,上述结果说明OsGSR1可能作用于BR生物合成途径。酵母双杂交筛选、体外Pull-down结果和体内BiFC实验都证实OsGSR1可以与DIM/DWF1互作。在BR生物合成途径中,DIM/DWF1催化从24-亚甲基固醇(24-methylenecholesterol)到油菜甾醇(campesterol)的转化。GC-MS测定内源BRs含量结果进一步证实,转基因水稻中DIM/DWF1催化反应产物积累量减少,说明该反应受到明显抑制。所以,OsGSR1是通过直接作用于BR合成酶来调控BR生物合成。 综上所述,OsGSR1是GA信号途径的正调控因子,并且OsGSR1通过调节SLR1的表达参与到GA信号转导途径。OsGSR1和DIM/DWF1的互作说明OsGSR1直接参与了BR的生物合成过程。因此,我们的实验证明OsGSR1介导了GA和BR这两条激素信号转导途径的相互作用,从而调节了水稻植株的生长发育。
Resumo:
Spindlin has been suggested to play an important role during the transition from oocyte maturation to embryo development in mouse, but its homolog similar to the mouse Spindlin in molecular and expression characterization has not been identified up to now in other vertebrates. In this study, a full length of cDNA sequence is cloned and sequenced from the gibel carp (Carassius auratus gibelio). It contains 1240 nucleotides with an open reading frame of 771 nt encoding 257 amino acids. Based on its amino acid sequence alignment and comparison analysis with the known Spin family proteins, the newly cloned Spin is named Carassius auratus gibelio Spindlin (CagSpin). Its product could be detected from mature eggs to blastula embryos, but its content decreased from the two-cell stage, and could not be detected after the gastrula stage. It suggests that the CagSpin should be a maternal protein that is expressed during oocyte maturation, and plays a crucial role in early cleavage of embryogenesis. CagSpin is the first homolog similar to mouse spindlin identified in fish, and also in other vertebrates. GST pull-down assay reveals the first biochemical evidence for the association of CagSpin and p-tubulin, the microtubule component. Therefore, CagSpin may play important functions by interacting with beta-tubulin and other spindle proteins during oocyte maturation and egg fertilization. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-aligned large-area multi-linger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880 mu m(2)) is fabricated with 2 mu m double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVCEO is 10 V and the collector-base junction breakdown voltage BVCBO is 16 V with collector doping concentration of 1 x 10(17) cm(-3) and thickness of 400 nm. The device exhibited a maximum oscillation frequency f(max) of 35.5 GHz and a cut-off frequency f(T) of 24.9 GHz at a dc bias point of I-C = 70 mA and the voltage between collector and emitter is V-CE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from 0 dBm to 21 dBm. A maximum output power of 29.9 dBm (about 977 mW) is obtained at an input power of 18.5 dBm with a gain of 11.47 dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, f(max) and f(T) are improved by about 83.9% and 38.3%, respectively.
Resumo:
Guest host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4'-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV-visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient kappa with the wavelength and approximately calculated the maximum absorption A(parallel tomax) as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectro photometer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Films of polyetherketone doped with the chromophores Disperse Red 1 (DR1) and Disperse Red 13 (DR13) were prepared by spin-coating method. By the in situ Second-harmonic Generation (SHG) signal intensity measurement, the optimal poling temperatures were obtained. For the investigated polyetherketone polymer doped with DR1 (DR1/PEK-c) and polyetherketone polymer doped with DR13 (DR13/PEK-c) films, the optimal poling temperatures were 150degreesC and 140degreesC, respectively. Under the optimal poling conditions, the high second-order nonlinear optical coefficient chi(33)((2)) = 11.02 pm/V has been obtained for the DR1/PEK-c; and for DR13/PEK-c at the same conditions the coefficient is 17.9 pm/V. The SHG signal intensity DR1/PEK-c could maintain more than 80% of its initial value when the temperature was under 100degreesC, and the SHG signal intensity of the DR13/PEK-c could maintain more than 80% of its initial value when the temperature was under 135degreesC. (C) 2002 Kluwer Academic Publishers.