67 resultados para positive productivity
Resumo:
Photosynthesis by phytoplankton cells in aquatic environments contributes to more than 40% of the global primary production (Behrenfeld et al., 2006). Within the euphotic zone (down to 1% of surface photosynthetically active radiation [PAR]), cells are exposed not only to PAR (400-700 nm) but also to UV radiation (UVR; 280-400 nm) that can penetrate to considerable depths (Hargreaves, 2003). In contrast to PAR, which is energizing to photosynthesis, UVR is usually regarded as a stressor (Hader, 2003) and suggested to affect CO2-concentrating mechanisms in phytoplankton (Beardall et al., 2002). Solar UVR is known to reduce photosynthetic rates (Steemann Nielsen, 1964; Helbling et al., 2003), and damage cellular components such as D1 proteins (Sass et al., 1997) and DNA molecules (Buma et al., 2003). It can also decrease the growth (Villafane et al., 2003) and alter the rate of nutrient uptake (Fauchot et al., 2000) and the fatty acid composition (Goes et al., 1994) of phytoplankton. Recently, it has been found that natural levels of UVR can alter the morphology of the cyanobacterium Arthrospira (Spirulina) platensis (Wu et al., 2005b). On the other hand, positive effects of UVR, especially of UV- A (315-400 nm), have also been reported. UV- A enhances carbon fixation of phytoplankton under reduced (Nilawati et al., 1997; Barbieri et al., 2002) or fast-fluctuating (Helbling et al., 2003) solar irradiance and allows photorepair of UV- B-induced DNA damage (Buma et al., 2003). Furthermore, the presence of UV-A resulted in higher biomass production of A. platensis as compared to that under PAR alone (Wu et al., 2005a). Energy of UVR absorbed by the diatom Pseudo-nitzschia multiseries was found to cause fluorescence (Orellana et al., 2004). In addition, fluorescent pigments in corals and their algal symbiont are known to absorb UVR and play positive roles for the symbiotic photosynthesis and photoprotection (Schlichter et al., 1986; Salih et al., 2000). However, despite the positive effects that solar UVR may have on aquatic photosynthetic organisms, there is no direct evidence to what extent and howUVR per se is utilized by phytoplankton. In addition, estimations of aquatic biological production have been carried out in incubations considering only PAR (i. e. using UV-opaque vials made of glass or polycarbonate; Donk et al., 2001) without UVR being considered (Hein and Sand-Jensen, 1997; Schippers and Lurling, 2004). Here, we have found that UVR can act as an additional source of energy for photosynthesis in tropical marine phytoplankton, though it occasionally causes photoinhibition at high PAR levels. While UVR is usually thought of as damaging, our results indicate that UVR can enhance primary production of phytoplankton. Therefore, oceanic carbon fixation estimates may be underestimated by a large percentage if UVR is not taken into account.
Resumo:
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 x 10(2) cells mL(-1) d(-1)), but the lowest cell yield (5420 cells mL(-1)) in three nitrate level cultures. High nitrate-grown cells showed lower levels of chlorophyll a-specific and cell-specific light-saturated photosynthetic rate (P-m(chl a) and P-m(cell)), dark respiration rate (R-d(chl a) and R-d(cell)) and chlorophyll a-specific apparent photosynthetic efficiency (alpha(chl a)) than was seen for low nitrate-grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7-9 times increase compared with non-supplemented control culture, achieving 43 540 cells mL(-1) and 52 300 cells mL(-1), respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.
Resumo:
Transferrin polymorphism has been studied in the polyploid Carassius auratus by cloning and sequence analysis of cDNAs from its three subspecies C. auratus gibelio, C. auratus auratus, and C. auratus cuvieri. DNA polymorphism of extremely high extent was shown for the transferrin gene by the 248 segregation sites among coding region sequences of its alleles. The deduced amino acid sequences of the transferrin alleles showed variable theoretical physicochemical parameters, which might constitute molecular basis for their electrophoretic heterogeneity. Positive selection was inferred by the replacement/synonymous ratios larger than 1 in partial allelic lineages which was subsequently confirmed by likelihood simulation under neutral or selection models. Furthermore, the correspondent sites to these selected codons were collectively located at two planes in the crystallographic structure of rabbit transferrin, which suggested that the rapid evolution of C. auratus transferrin might correlate to its adaptation to variable environmental elements such as oxygen pressure. The minimal 26 recombination events were detected among coding sequences of C. auratus transferrin, with partial mosaic sequences and breakpoints identified by identity scanning and information site analyses. Phylogenetic analyses revealed multiple antique allelic lineages of transferrin, which was estimated to diverge fifteen to twenty MYA. All these features strongly suggested the role of balancing selection in long persistence of high transferrin polymorphism in C. auratus. Furthermore, owing to its particular evolutionary backgrounds, the silver crucian carp might possess a distinctive balancing selection mechanism.
Resumo:
The gene targeting technique is a powerful tool for analyzing functions of cloned genes and for generating transgenic animals with site-directed integration of foreign genes. In order to develop this technique in fish, positive-negative selection (PNS) and homologous recombination vectors were constructed, and their expression was examined in fish cells. A vector (pNK) for PNS consists of the neomycin resistance gene (neo) as a positive selectable marker gene and the herpes simplex virus (HSV) thymidine kinase (tk) gene as a negative selectable marker gene. Positive selection with geneticin (G418) of epithelioma papulosum of carp (EPC) cells transfected with linearized pNK vector yielded 350 colonies, while double selection of transfected EPC cells with G418 and gancyclovir (Gc) resulted in nearly complete cell death, demonstrating that the PNS procedure is effective in fish cells. Homologous recombination vectors consist of the Xiphophorus melanoma receptor kinase (X mrk(Y)) gene as homologous sequence in addition to the neo and tk genes. Conditions for homologous recombination vector transfection and drug selection were established. After verification of the feasibility of expression of homologous recombination vectors in EPC cells, the first gene targeting experiments were attempted in the Xiphophorus melanoma cell line, PSM. Positive-negative selection of the targeting vector-transfectants led to a low enrichment in this particular cell line. The reasons for the low enrichment in PSM cells were discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Magnetotransport measurements have been carried out on In0.53Ga0.17As/In0.52Al0.48 As quantum wells in a temperature range between 1.5 and 77 K. We have observed a large positive magnetoresistance in the low magnetic field range, but saturating in high magnetic fields. The magnetoresistance results from two occupied subbands in the two-dimensional electron gas. With the intersubband scattering considered, we obtained the subband mobility by analyzing the positive magnetoresistance. It is found that the second subband mobility is larger than that of the first due to the existence of the intersubband scattering.
Resumo:
In order to obtain greater radiation hardness for SIMOX (separation by implanted oxygen) materials, nitrogen was implanted into SIMOX BOX (buried oxide). However, it has been found by the C-V technique employed in this work that there is an obvious increase of the fixed positive charge density in the nitrogen-implanted BOX with a 150 out thickness and 4 x 10(15) cm(-2) nitrogen implantation dose, compared with that unimplanted with nitrogen. On the other hand, for the BOX layers with a 375 nm thickness and implanted with 2 x 10(15) and 3 x 10(15) cm(-2) nitrogen doses respectively, the increase of the fixed positive charge density induced by implanted nitrogen has not been observed. The post-implantation annealing conditions are identical for all the nitrogen-implanted samples. The increase in fixed positive charge density in the nitrogen-implanted 150 nm BOX is ascribed to the accumulation of implanted nitrogen near the BOX/Si interface due to the post-implantation annealing process according to SIMS results. In addition, it has also been found that the fixed positive charge density in initial BOX is very small. This means SIMOX BOX has a much lower oxide charge density than thermal SiO2 which contains a lot of oxide charges in most cases.
Resumo:
It is theoretically shown that the simultaneously large positive and negative lateral displacements will appear when the resonant condition is satisfied for a TE-polarized light beam reflected from the total internal reflection configuration with a weakly absorbing dielectric film. Appearance of the enhanced negative lateral displacement is relative to the incidence angle, absorption of the thin Elm and its thickness. If we select an appropriate weakly absorbing dielectric film and its thickness, the simultaneously enhanced positive and negative lateral displacements will appear at different resonant angles. These phenomena may lead to convenient measurements and interesting applications in optical devices.
Resumo:
We investigate the controllable negative and positive group delay in transmission through a single quantum well at the finite longitudinal magnetic fields. It is shown that the magneto-coupling effect between the longitudinal motion component and the transverse Landau orbits plays an important role in the group delay. The group delay depends not only on the width of potential well and the incident energy, but also on the magnetic-field strengthen and the Landau quantum number. The results show that the group delay can be changed from positive to negative by the modulation of the magnetic field. These interesting phenomena may lead to the tunable quantum mechanical delay line. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
土地利用是人类根据土地质量特性来开发利用土地,创造财富,满足人类生产和生活的需要,同时改善环境,满足人类生存需要的过程。土地利用总体规划是对未来各类用地在空间上、时间上作出总体的协调的预先安排,不仅受到一定历史背景的制约,同时也受影响于当前的社会经济发展情况。但是,国内传统的土地利用总体规划往往从狭窄的技术经济观点出发,对远期的生态环境问题、社会问题缺少考虑,将新的用地尽量安排在最便捷、最经济的地方。 由于土地利用总体规划对环境影响具有长期性、复杂性、综合性、有时还有不可逆转性等特点,迫切需要在编制土地利用总体规划时对规划区与土地利用有关的环境影响进行科学研究,把环境保护纳入土地利用活动的计划、决策和规划实施中,促进土地资源持续、协调的利用。为更好地进行土地利用总体规划环境影响评价必须首先建立相应的评价指标体系,而目前国内关于该项研究的理论和实践的相关报道都较少。 本论文在综述国内外土地利用总体规划环境影响评价的理论与实践的基础上,在国内第一批开展了相关领域的案例研究,采用理论研究和案例分析相结合的研究方法对土地利用总体规划环境影响评价方法和指标体系进行了研究,对邛崃市土地利用总体规划进行了环境影响评价,其研究的主要内容和论点如下: (1)第一次根据FAO 确定的五大原则,引入了生态用地的概念并按照价值模型构建了以土地资源可持续利用为目标的县级土地利用总体规划环境影响评价的指标体系。以生产性、稳定性、保护性、经济活力、社会可接受性五个方面作为指标层来度量土地利用总体规划的环境影响,并选取了土地利用率、土地整理率、水面指数、生态用地面积比例、耕地转化率、建设用地产值指数、公众满意度等21 个元指标作为具体的评价指标。该指标体系强调了规划方案的公众参与,便于充分吸收公众的意见和建议;并且评价指标获取容易,实用性较强。 (2)在土地利用总体规划环境影响评价方法上进行了有益的探索和尝试,由于土地利用总体规划环境影响评价的主要对象是几个拟定的规划方案,所以采用综合评分法(包括特尔斐法和层次分析法)和公众参与相结合的评价方法。应用上述指标体系和评价方法对邛崃市土地利用总体规划的三个方案进行了评价筛选,高方案最终得分为92.049;中方案最终得分为91.028;而低方案最终得分为95.541,为最优方案。 (3)开展了对土地利用总体规划替代方案和公众参与机制的研究,对公众参与的方式、程序及主要内容从理论和实践两方面进行了有益的尝试,收到了良好的效果。 (4)对邛崃市土地利用总体规划进行了环境影响评价,根据邛崃市的具体情况,对规划实施后可能造成的环境正、负面影响进行了分析和预测,提出了预防或者减轻不良环境影响的对策和措施。 Land use is a process, which is to develop land according to its mass property. Bycreating the wealth and improving the environment, it can meet the need of production,life and human survival. Land use planning, as a planning form to guide land use, issubject to the historical background, and influenced by development of economic andsociety. The land use planning in the past, from narrow economic technology view,lacking of concerning ecologic environmentand social problem, arranged new land in the most convenient and economic place. Because of complexity, comprehensive and sometimes irreversible characteristicsof environmental impact caused by land use planning which has been implemented, it isneed to carry on scientific research on environmental impact related to land use as theland use planning is forming, to bring environmental protection within the plan, policymaking and implementing of land use activity, promoting the sustainment, harmonious use of land resource. This paper, taking the readjustment of land use planning in Qionglai as an example,assessed its environmental impact of land use planning. The main contents and results arepresented as follows: (1) On the basis of the five criterions of AFO, for the first time propose county classoverall planning of land uses SEA index by inducting ecological land use andestablishing the Value factor system, according to Productivity criterion,Stabilitycriterion,Sheltered criterion,Economic livingness criterion,Social acceptabilitycriterion,the environmental impact of land use system was assessed by using Valuemodel. Through identifying the factors of environmental impact of land use planning, thepaper established the factor system of SEA of land use planning. From the land usefactors, 21 factors was chosen to assess the environmental impact degree of land useplanning, such as, index of land use degree, the rate of land collating, index of watersurface, the rate of ecological use land, cultivated land conversion ratio, forest landconversion ratio, public satisfaction degree and so on. These indexes make a point thatpublic participation of plan project fully absorb public idea and propose and the index easily get, better utility. (2) Attempt useful assessment method system of SEA of land use planning. In viewof there are no or almost no inevitable contact among the factors of SEA of land useplanning,we use AHP (Analytic Hierarchy Process) as the main assess method . Thereare three plans are compared in this paper apply the foregoing index and assessmentmethod. The high plan finally score is 92.049,while the middle plan is 91.028. The lowplan score is 95.541,is the best one,as the selected plan. (3) Carry on the research of the alternative scheme of overall planing of land useand public participation,to the fashion ,procedure and object matter carry out helpfulattempt from theory to practice,the results is good. (4)Took place SEA of Qionglai County overall planing of land use,according to thecircumstance of Qionglai,we analyze and forecast the positive and negative affect afterthe plan implement,and put forward the countermeasure and means to prevent or abatebad environmental impact.
Resumo:
干旱环境常常由于多变的降水事件和贫瘠土壤的综合作用,表现出较低的生产力和较低的植被覆盖度。全球性的气候变暖和人类干扰必将使得干旱地区缺水现状越来越严竣。贫瘠土壤环境中已经很低的有效养分含量也将会随着干旱的扩大而越来越低。干旱与半干旱系统中不断加剧的水分与养分的缺失将严重限制植物的生长和植被的更新,必然会使得已经恶化的环境恶化速率的加快、恶化范围的加大。如何抑制这种趋势,逐步改善已经恶化的环境是现在和将来干旱系统管理者面临的主要关键问题。了解干旱系统本土植物对未来气候变化的适应机制,不仅是植物生态学研究的重要内容,也对人为调节干旱环境,改善干旱系统植被条件,提高植被覆盖度具有重要的实践意义。 本研究以干旱河谷优势灌木白刺花(Sophora davidii)为研究对象,通过两年大棚水分和施N控制实验和一个生长季野外施N半控制实验,从植物生长-生理-资源利用以及植物生长土壤环境特征入手,系统的研究了白刺花幼苗生长特性对干旱胁迫和施N的响应与适应机制,并试图探讨施N是否可调节干旱系统土壤环境,人工促进干旱条件下幼苗定居,最终贡献于促进植被更新实践。初步研究结论如下: 1)白刺花幼苗生长、生物量积累与分配以及水分利用效率对干旱胁迫和施N处理的适应白刺花幼苗株高、基径、叶片数目、叶面积、根长、生物量生产、相对含水量和水分利用效率随着干旱胁迫程度的增加而明显降低,但地下部分生物量比例和R/S随着干旱胁迫程度的增加而增加。轻度施N处理下幼苗株高、基径、叶片数目、叶片面积和生物量生产有所增加。但重度施N处理下这些生长指标表现出微弱甚至降低的趋势。严重干旱胁迫条件下,幼苗叶面积率、R/S、相对含水量和水分利用效率也以轻度施N处理为最高。 2)白刺花幼苗叶片光合生理特征对干旱胁迫和施N处理的适应叶片光合色素含量和叶片光合效率随着干旱胁迫程度的增加而显著降低,并且PS2系统在干旱胁迫条件下表现出一定程度的光损害。但是比叶面积随着干旱胁迫程度的增加而增加。在相对较好水分条件下幼苗净光合速率的降低可能是因为气孔限制作用,而严重干旱胁迫条件下非气孔限制可能是导致幼苗叶片光合速率下降的主要原因。叶片叶绿素含量、潜在光合能力、羧化效率、光合效率以及RUBP再生能力等在施N处理下得到提高,并因而改善干旱胁迫条件下光合能力和效率。虽然各荧光参数对施N处理并无显著的反应,但是干旱胁迫条件下qN和Fv/Fm在轻度施N处理下维持相对较高的水平,而两年连续处理后在严重干旱胁迫条件下幼苗叶片光合效率受到重度施N处理的抑制,并且Fv/Fm和qN也在重度施N处理下降低。 3)白刺花幼苗C、N和P积累以及N、P利用效率对干旱胁迫和施N处理的适应白刺花幼苗C、N和P的积累,P利用效率以及N和P吸收效率随干旱胁迫程度的增加而显著降低,C、N和P的分配格局也随之改变。在相同水分处理下,C、N和P的积累量、P利用效率以及N和P吸收效率在轻度施N处理下表现为较高的水平。然而,C、N和P的积累量和P利用效率在重度施N处理下不仅没有表现出显著的正效应,而且有降低的趋势。另外,在相同水分条件下白刺花幼苗N利用效率随着施N强度的增加而降低。 4)白刺花幼苗生长土壤化学与微生物特性对干旱胁迫和施N的适应白刺花幼苗生长土壤有机C、有效N和P含量也随干旱胁迫程度的增加而明显降低。干旱胁迫条件下土壤C/N、C/P、转化酶、脲酶和碱性磷酸酶活性的降低可能表明较低的N和P矿化速率。尽管微生物生物量C、N和P对一个生长季干旱胁迫处理无显著反应,但微生物生物量C和N在两年连续干旱胁迫后显著降低。土壤有机C和有效P含量在轻度施N处理下大于重度施N处理,但是有效N含量随着施N强度的增加而增加。微生物生物量C和N、碱性磷酸酶和转化酶活性也在轻度施N处理下有所增加。但是碱性磷酸酶活性在重度施N处理下降低。 5)野外条件下白刺花幼苗生长特征及生长土壤生化特性对施N的适应植物生长、生物生产量、C的固定、N、P等资源的吸收和积累、其它受限资源的利用效率(如P)在轻度施N处理下均有所增加,但N利用效率有所降低。幼苗生物生产量及C、N和P等资源的分配格局在轻度施N处理下也没有明显的改变。白刺花幼苗叶片数目、生物生产量和C、N、P的积累量在重度施N处理下虽然也相对于对照有所增加,但幼苗根系长度显著降低。生物量及资源(生物量、C、N、P)在重度施N处理下较多地分配给地上部分(主要是叶片)。另外,土壤有机C、全N和有效N含量随外源施N的增加而显著增加,土壤pH随之降低,但土壤全P含量并无显著反应。其中有机C含量和有效P含量以轻度施N处理最高。微生物生物量C、N和P在轻度施N处理下也显著增加,而微生物生物量C在重度施N处理下显著降低。同时,转化酶、脲酶、碱性磷酸酶和中性磷酸酶活性在施N处理下也明显的提高,但酸性磷酸酶和过氧化氢酶活性显著降低,其中碱性磷酸酶和中性磷酸酶活性以轻度施N处理最高。 综合分析表明,干旱河谷水分和N严重限制了白刺花幼苗的生长。施N不能完全改变干旱胁迫对白刺花幼苗的抑制的作用,但是由于施N增加土壤N有效性,改善土壤一系列生物与化学过程,幼苗的生长特性也对施N表现出强烈的反应,表现为植物结构与资源分配格局的改善,植物叶片光合能力与效率的提高,植物生长以及利用其他受限资源(如水分和P)的效率的增加,致使植物自身生长及其生长环境在干旱环境下得到改善。但是过度施N不仅不能起到改善干旱胁迫下植物生长环境、促进植物生长的作用,反而在土壤过程以及植物生长过程中加重干旱胁迫对植物的伤害。因此,建议在采用白刺花作为先锋种改善干旱河谷系统环境的实践中,可适当施加N以改善土壤环境,调节植物利用与分配资源的效率,促进植物定居,得到人工促进种群更新的目的。但在实践过程中也要避免过度施N。 Arid regions of the world are generally noted for their low primary productivity which is due to a combination of low, unpredictable water supply and low soil nutrient concentrations. The most serious effects of global climate change and human disturbances may well be those which related to increasing drought since drought stress has already been the principal constraint in plant growth. The decline in total rainfall and/or soil water availability expected for the next decades may turn out to be even more drastic under future warmer conditions. Nevertheless, water deficit is not the only limiting factor in arid and semiarid environments. Soils often suffer from nutrient (especially N and P) deficiencies in these ecosystems, which can also be worsened by climate change. How to improve the poor soil quality and enhance the vegetation coverage is always the problem facing ecosystem managers. The adaptive mechanisms of native plant to future climate change is always the focus in plant ecology, it also plays important roles in improving vegetation coverage by manual controlled programmes. Sophora davidii is a native perennial shrub of arid valleys, which is often predominant on eroded slopes and plays a vital role in retaining ecological stability in this region. It has been found that S. davidii was better adapted to dry environment than other shrubs, prompting its use for re-vegetation of arid lands. A two-years greenhouse experiment and a field experiment were conducted in order to understand the adaptation responses of Sophora davidii seedlings to different water and N conditions, and further explore if additional N supply as a modified role could enhance the adaptation ability of S. davidii seedlings to dry and infertile environment. Two-month old seedlings were subjected to a completely randome design with three water (80%, 40% and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg-1 soil) regimes. Field experiment was arranged only by three N supplies in the dry valley. 1) The growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings in respond to drought stress and N supply Seedlings height, basal diameter, leaf number, leaf area, root length, biomass production, relative water content (RWC) and WUE were decreased with increase of drought stress. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions. Low N supply increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, these growth characteristics showed little or negative effect to high N supply treatment. Leaf percentages increased with increase of N supply, but fine root percentages decreased. In addition, Low N supply rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20%FC), even though these parameters could increase with the high N supply treatment under well-watered condition (80%FC). Moreover, Low N supply also increased WUE under three water conditions, but high N supply had little effect on WUE under drought stress conditions (40%FC and 20%FC). 2) Leaf gas exchange and fluorescence parameters of Sophora davidii seedlings in respond to drought stress and N supply Leaf area (LA), photosynthetic pigment contents, and photosynthetic efficiency were decreased with increase of drought stress, but specific leaf area (SLA) increased. Photodamage in photosystem 2 (PS2) was also observed under drought stress condition. The decreased net photosynthetic rate (PN) under relative well-watered water conditions might result from stomatal limitations, but the decreased PN under other hand, photosynthetic capacity by increasing LA, photosynthetic chlorophyll contents, Pnmax, CE, Jmax were increased with increase N supply, and photosynthetic efficiency was improved with N supply treatment under water deficit. Although N supply did a little in alleviating photodamages to PS2 caused by drought stress, low N supply enhanced qN and kept relative high Fv/Fm under drought stress condition. However, high N supply inhibited leaf photosynthetic efficiency, and declined Fv/Fm and qN under severe drought stress condition after two year continues drought stress and N supply. 3) Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in respond to drought stress and N supply C, N and P accumulation, NUE , N and P uptake efficiency (NUtE and NUtE ) P N P were decreased with increase of drought stress regardless of N supply. On the other hand, the S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply rather than the other two N treatments increased C, N and P accumulation, improved NUEP, NUtE and NUtE under corresponding water condition. In contrast, high N supply N P did few even depressed effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP could increase with high N supply under corresponding water conditions. Even so, a decrease of NUEN was observed with increase of N supply under corresponding water conditions. 4) Soil microbial and chemical characters in respond to drought stress and N supply The content of soil organic C, available N and P were decreased with increase of drought stress. Decreases in C/N and C/P, and invertase, urea and alkaline phosphatase activity were also observed under drought stress conditions, indicating a lower N and P mineralization rate. Although microbial biomass C, N and P showed slight responses to drought stress after one growth period treatment, microbial biomass C and N were also decreased with increase of drought stress after two year continuous treatment. The content of soil organic C and available P showed the stronger positive responses to low N supply than which to high N supply, although than the other two N treatments increased microbial biomass N and invertase activity under severe drought stress condition, even though invertase activity could increase with high N supply treatment under relative well-water conditions. Moreover, low N supply treatment also increased C/P and alkaline phosphatase activity which might result from higher P mineralization, but high N supply did negative effects on alkaline phosphatase activity. 5) The growth characteristics of Sophora davidii seedlings and soil microbial and chemical characters in respond to N supply under field condition Low N supply facilitated seedlings growth by increasing leaf number, basal diameter, root length, biomass production, C, N and P accumulation and absorption, and enhancing the use efficiency of other limited resources as P. Compared to control, however, low N supply did little effect on altering biomass, C, N and P portioning in seedlings components. On the contrary, high N supply treatment also increased leaf number, biomass and C, N and P accumulation relative to control, but significantly decreased root length, and altered more biomass and resources to above-ground, which strongly reduced the ability of absorbing water under drought condition, and thus which might deep the drought stress. In addition, N supply increased soil C, N and available N content, but declined pH and showed little effects on P content. Low N supply showed higher values of soil C and available P content. Low N supply also increased microbial biomass C, N and P, although high N supply decreased microbial biomass C. N supply significantly enhanced soil invertase, urea, alkaline and neutral phosphratase activity, while declined acid phosphratase and catalase activity. Low N supply exhibited higher alkaline and neutral phosphratase activity compared to the others. The results from this study indicated that both drought and N limited the growth of S. davidii seedlings and their biomass production. Regardless of N supply levels, drought stress dramatically reduced the seedlings growth and biomass production. Although plant growth parameters, including basal diameter, height, leaf number, and biomass and their components were observed to be positive responses to low N supply, N supply alone can not alter the diminishing tendency which is caused by drought. available N content increased with increase N supply. In addition, low N supply rather These findings imply that drought played a primary limitation role and N was only the secondary. Even so, appropriate N supply was seemed to enhance the ability that S. davidii seedlings adapted to the xeric and infertile environment by improving soil processes, stimulating plant growth, increasing recourses accumulation, enhancing use efficiency of other limited resources, and balancing biomass and resources partitioning. Appropriate N supply, therefore, would be recommended to improve S. davidii seedling establishment in this region, but excess N supply should be avoided.