36 resultados para pH and acidity
Resumo:
A reversed-phase high-performance liquid chromatographic method with amperometric detection is described for the separation and quantification of uric acid, guanine, hypoxanthine and xanthine. The isocratic separation of a standard mixture of the compounds was achieved in 5 min on a Spherisorb 5 C-18 reversed-phase column, with a mobile phase of NaH2PO4 (300 mmol dm(-3) pH 3.0)-methanol-acetonitrile-tetrahydrofuran (97.8 + 0.5 + 1.5 + 0.2). Uric acid, guanine, hypoxanthine and xanthine were completely separated, with detection limits in the range 2-20 pmol per injection. The effect of pH and the composition of the mobile phase on the separation are described. The hydrodynamic voltammograms of these compounds were recorded at a glassy carbon electrode. The linear range of the calibration graph for each compound was: uric acid; 1-5000 mu mol dm(-3); guanine, 0.5-2000 mu mol dm(-3); hypoxanthine, 0.1-500 mu mol dm(-3) and xanthine, 0.5-5000 mu mol dm(-3). The within- and between-day precision was good. The uric acid and hypoxanthine content in human plasma was measured using the proposed method. Good recoveries of uric acid (97.9-103%), hypoxanthine (98.0-99.2%), guanine (96.0-98.3%) and xanthine (96.0-102%) were obtained from human plasma. The results of electrochemical detection were in good agreement with those of UV detection.
Resumo:
In this work, the characterization of a chitosanase-producing bacterium isolated from soil was reported and this strain was grouped under the genus Aeromonas by virtue of its morphological, physiological properties and 16S rDNA gene sequences. It is the first report that the genus Aeromonas could produce chitosanase. Aeromonas sp. HG08 could secrete the chitosanase ( named AsChi) with molecular weight of 70 kDa. The optimum pH and temperature of AsChi was 6.0 and 55 degrees C, respectively. The activity of AsChi was markedly enhanced by Mn2+ and inhibited by Fe3+, Cu2+, Ag+ and Hg2+; additionally, the activity of AsChi was increased with the degree of deacetylation ( DDA) of chitosan. Through viscosimetric assay, AsChi probably hydrolyzed chitosan in an endo-type fashion.
Resumo:
This study was carried out in the Changjiang Estuary from 19 to 26 May 2003. Based on the data collected from 29 stations, including two anchor stations, phytoplankton taxonomic composition, abundance, diurnal variability and spatial distribution were examined. Eighty-seven species, including 54 species of diatoms and 16 red tide causative species, were identified. Average diversity index (H') and evenness (J) values were 1.04 and 0.40, respectively. A bloom in abundance of certain phytoplankton species, especially Prorocentrum dentatum and Skeletoneina costatum, was thought to be the cause of the low diversity index and evenness values. Total phytoplankton abundance averaged 6.75 x 10(5) cells 1(-1), and was much higher than previous investigation carried out in the same month in 1986. Abundance increased seaward showing a distinct spatial difference, and the dominant species varied with salinity. Correlation between phosphorus and abundance further supported the former conclusion that phosphorus is the controlling factor in phytoplankton growth in the Changjiang Estuary where light is not limiting. Based on the relationship between DO, pH and abundance, it is likely that the bloom was caused by rapid in situ growth of phytoplankton with high nutrients and sufficient light. The data also indicated that the duration of the bloom was not long and
Resumo:
The effect of S-10, a strain of marine bacteria isolated from sediment in the Western Xiamen Sea, on the growth and paralytic shellfish poison (PSP) production in the alga Alexandrium tamarense (A. tamarense) was studied under controlled experimental conditions. The results of these experiments have shown that the growth of A. tamarense is obviously inhibited by S-10 at high concentrations, however no evident effect on its growth was observed at low concentrations. Its PSP production was also inhibited by S 10 at different concentrations, especially at low concentrations. The toxicity of this strain of A. tamarense is about (0.9512.14) x 10(-6) MU/cell, a peak toxicity value of 12.14 x 10(-6) MU/cell appeared on the 14th day, after which levels decreased gradually. The alga grew well in conditions of pH 6-8 and salinities of 20-34 parts per thousand. The toxicity of the alga varied markedly at different pH and salinity levels. Toxicity decreased as pH increased, while it increased with salinity and reached a peak value at a salinity of 30 parts per thousand, after which it declined gradually. S-10 at a concentration of 1.02 x 10(9) cells/ml inhibited growth and the PSP production of A. tamarense at different pH and salinity levels. S-10 had the strongest inhibitory function on the growth of A. tamarense under conditions of pH 7 and a salinity of 34 parts per thousand. The best inhibitory effect on PSP production by A. tamarense was at pH 7, this inhibitory effect on PSP production did not relate to salinity. Interactions between marine bacteria and A. tamarense were also investigated using the flow cytometer technique (FCM) as well as direct microscope counting. S-10 was identitied as being a member of the genus Bacillus, the difference in 16S rDNA between S-10 and Bacillus halmapalus was only 2%. The mechanism involved in the inhibition of growth and PSP production of A. tamarense by this strain of marine bacteria, and the prospect of using it and other marine bacteria in the biocontrol of red-tides was discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.
Resumo:
The effects of marine environmental factors-temperature (T), dissolved oxygen (DO), salinity (S) and pH-on the oxidation-reduction potential (ORP) of natural seawater were studied in laboratory. The results show an indistinct relationship between these four factors and the ORP, but they did impact the ORP Common mathematical methods were not applicable for describing the relationship. Therefore, a grey relational analysis (GRA) method was developed. The degrees of correlation were calculated according to GRA and the values of T, pH, DO and S were 0.744, 0.710, 0.692 and 0.690, respectively. From these values, the relations of these factors to the ORP could be described and evaluated, and those of T and pH were relatively major. In general, ORP is influenced by the synergic effect of T, DO, pH and S, with no single factor having an outstanding role.