43 resultados para orbital currents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bonding and the 4f orbital effect of lanthanide elements at different valence state in their compounds have been studied by INDO method in this paper. The results obtained show that the bonding of lanthanide compounds is affected by many factors, such as valence state, ionic radius, ligand, coordinate number, space configuration etc. The strength of bonds composed of different ligands with lanthanide is distinctly different. The covalence of Ln-L bonds of lanthanide ions at high valence state in their compounds is larger than that at low valence state, The covalency at low coordinate number is larger than that at high coordinate number. Some lanthanide compounds with special configuration, besides sigma-bond, can form p(pi)-d(pi) dative bond with much overlap, which makes the Ln-L bond increase markedly. The effect of 4f orbitals on bonding is far less than that of 5d orbitals. The Ln 4f orbitals at 3 or 2 valence state may be considered to be essentially localized, while the contribution of 4f orbitals on bonding in 4 valent cerium compounds increases obviously, up to 1%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unified criterion is developed for initiation of non-cohesive sediment motion and inception of sheet flow under water waves over a horizontal bed of sediment based on presently available experimental data. The unified threshold criterion is of the single form, U-o = 2 pi C[1 + 5(T-R/T)(2)](-1/4), where U-o is the onset velocity of sediment motion or sheet flow, T is wave period, and C and T-R are the coefficients. It is found that for a given sediment, U-o initially increases sharply with wave period, then gradually approaches the maximum onset velocity U-o = 2 pi C and becomes independent of T when T is larger. The unified criterion can also be extended to define sediment initial motion and sheet flow under irregular waves provided the significant wave orbital velocity and period of irregular waves are introduced in this unified criterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional ocean circulation model, called Princeton Ocean Model (POM), is employed to simulate tides and tidal currents in Liaodong Bay. The nested grid technique is adopted to improve the computation precision. Computed harmonic constants of M-1, M-2 tides at five tidal gauge stations and surface elevations at two oil platforms are compared with those observed, and show good agreements with them. Based on the calculated results, the co-amplitude and co-phase tag lines of nil and M-2 tidal constituents, the residual current field of M-2 constituent, tidal form, tidal Current ellipse and the moving style of tidal current are given. It is found that diurnal tidal constituents have no amphidromic point whereas semi-diurnal constituents have one in the region of interest. Meanwhile, some meaningful results are concluded and presented, which are conducive to a thorough knowledge of the characteristics of tides and tidal currents in the Liaodong Bay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new nonlinear integral transform relating the ocean wave spectrum to the along-track interferometric synthetic aperture radar (AT-INSAR) image spectrum. The AT-INSAR, which is a synthetic aperture radar (SAR) employing two antennas displaced along the platform's flight direction, is considered to be a better instrument for imaging ocean waves than the SAR. This is because the AT-INSAR yields the phase spectrum and not only the amplitude spectrum as with the conventional SAR. While the SAR and AT-INSAR amplitude spectra depend strongly on the modulation of the normalized radar cross section (NRCS) by the long ocean waves, which is poorly known, the phase spectrum depends only weakly on this modulation. By measuring the phase difference between the signals received by both antennas, AT-INSAR measures the radial component of the orbital velocity associated with the ocean waves, which is related to the ocean wave height field by a well-known transfer function. The nonlinear integral transform derived in this paper differs from the one previously derived by Bao et al. [1999] by an additional term containing the derivative of the radial component of the orbital velocity associated with the long ocean waves. By carrying out numerical simulations, we show that, in general, this additional term cannot be neglected. Furthermore, we present two new quasi-linear approximations to the nonlinear integral transform relating the ocean wave spectrum to the AT-INSAR phase spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we describe the velocity structure and transport of the North Equatorial Current (NEC), the Kuroshio, and the Mindanao Current (MC) using repeated hydrographic sections near the Philippine coast. A most striking feature of the current system in the region is the undercurrent structure below the surface flow. Both the Luzon Undercurrent and the Mindanao Undercurrent appear to be permanent phenomena. The present data set also provides an estimate of the mean circulation diagram (relative to 1500 dbar) that involves a NEC transport of 41 Sverdrups (Sv), a Kuroshio transport of 14 Sv, and a MC transport of 27 Sv, inducing a mass balance better than 1 Sv within the region enclosed by stations. The circulation diagram is insensitive to vertical displacements of the reference level within the depth range between 1500 and 2500 dbar. Transport fluctuations are, in general, consistent with earlier observations; that is, the NEC and the Kuroshio vary in the same phase with a seasonal signal superimposed with interannual variations, and the transport of the MC is dominated by a quasi-biennial oscillation. Dynamic height distributions are also examined to explore the dynamics of the current system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, the random inter facial waves in N-layer density-stratified fluids moving at different steady uniform speeds are researched by using an expansion technique, and the second-order a symptotic solutions of the random displacements of the density interfaces and the associated velocity potentials in N-layer fluid are presented based on the small amplitude wave theory. The obtained results indicate that the wave-wave second-order nonlinear interactions of the wave components and the second-order nonlinear interactions between the waves and currents are described. As expected, the solutions include those derived by Chen (2006) as a special case where the steady uniform currents of the N-layer fluids are taken as zero, and the solutions also reduce to those obtained by Song (2005) for second-order solutions for random interfacial waves with steady uniform currents if N=2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review covers the discovery and studies of the year-round northeastward currents off the southeastern China coast, paying special attention to its upwind characteristic in winter, mainly focusing on work by Chinese oceanographers. This current system is a prominent and unique phenomenon in the shelf circulation of the world ocean. The general features of the current system are summarized. The evidence for the existence and the variation of the three parts of the currents-the South China Sea Warm Current, the Taiwan Strait Warm Current and the Taiwan Warm Current-are separately elucidated. The formation mechanisms of the current as a whole are explained using dynamic analysis and numerical simulation results. Some suggestions for further studies are also made.