67 resultados para optimal scaling
Resumo:
The mode-area, scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300 mu m in core diameter with numerical aperture 0.1.
Resumo:
In this study, aspects of the structural mechanics of the upper and lower limbs of the three Chinese species of Rhinopithecus were examined. Linear regression and reduced major axis (RMA) analyses of natural log-transformed data were used to examine the dimensions of limb bones and other relationships to body size and locomotion. The results of this study suggest that: (1) the allometry exponents of the lengths of long limbs deviate from isometry, being moderately negative, while the shaft diameters (both sagittal and transverse) show significantly positive allometry; (2) the sagittal diameters of the tibia and ulna show extremely significantly positive allometry - the relative enlargement of the sagittal, as opposed to transverse, diameters of these bones suggests that the distal segments of the fore- and hindlimbs of Rhinopithecus experience high bending stresses during locomotion; (3) observations of Rhinopithecus species in the field indicate that all species engage in energetic leaping during arboreal locomotion. The limbs experience rapid and dramatic decelerations upon completion of a leap. We suggest that these occasional decelerations produce high bending stresses in the distal limb segments and so account for the hypertrophy of the sagittal diameters of the ulna and tibia.
Resumo:
The numbers of spawning sites for Chinese sturgeon have been drastically reduced since the construction of the Gezhouba Dam across the Yangtze River. This dam has blocked migration of Chinese sturgeon to their historic spawning ground causing a significant decline of the Chinese sturgeon population. We conducted a VORTEX population viability analysis to estimate the sustainability of the population and to quantify the efficiency of current and alternative conservation procedures. The model predicted the observed decline of Chinese sturgeon, resulting from the effect of the Gezhouba Dam. These simulations demonstrated the potential interest of two conservation measures: increasing spawning area and reducing predation on sturgeon eggs. The simulations also demonstrated that the actual restocking program is not sufficient to sustain sturgeon population as the artificial reproduction program induce the loss of more wild mature adults that the recruitment expected by the artificial reproduction.
Resumo:
We study the optimal teleportation based on Bell measurements via the thermal states of a two-qubit Heisenberg XXX chain in the presence of the Dzyaloshinsky-Moriya (DM) anisotropic antisymmetric interaction and obtain an optimal unitary transformation. The explicit expressions of the output state and the teleportation fidelity are presented and compared with those of the standard protocol. It is shown that in this protocol the teleportation fidelity is always larger and the unit fidelity is achieved at zero temperature. The DM interaction can enhance the teleportation fidelity at finite temperatures, as opposed to the effect of the interaction in the standard protocol. Cases with other types of anisotropies are also discussed. Copyright (C) EPLA, 2009
Resumo:
Size self-scaling effect in stacked InAs/In0.52Al0.48As nanowires on InP substrates is revealed, i.e., the base width and height of the InAs nanowires have clear proportional dependence on thickness of the InAlAs spacer layer used in different samples. The photoluminescence wavelength from different samples, which varies between 1.3 and 1.9 mum, is also found closely correlated to the size self-scaling effect. This phenomenon can be well explained in the context of formation mechanism and growth features of the InAs/InAlAs nanowire arrays. The finding illustrates a degree of freedom to control the structural and optical properties of strained self-organized nanostructures. (C) 2004 American Institute of Physics.
Resumo:
In a practical coupling system, a cylindrical microlens is used to collimate the emission of a high powerlaser diode (LD) in the dimension perpendicular to the junction plane. Using passive alignment, the LD isplaced in the focus of the cylindrical microlens generally, regardless of the performance of the multimodeoptical fiber and the LD. In this paper, a more complete analysis is arrived at by ray-tracing technique,by which the angle θ of the ray after refraction is computed as a function of the angle θo of the ray beforerefraction. The focus of the cylindrical microlens is not always the optimal position of the LD. In fact, inorder to achieve a higher coupling efficiency, the optimal distance from the LD to the cylindrical microlensis dependent on not only the radius R and the index of refraction n of the cylindrical microlens, but alsothe divergence angle of the LD in the dimension perpendicular to the junction plane and the numericalaperture (NA) of the multimode optical fiber. The results of this discussion are in good agreement withexperimental results.
Resumo:
To improve the sensitivity of our laser radar system, we provided a set of control method for APDs (Avalanched Photodiodes) based on single-chip computer together with the circuits dealing with noise and temperature. It adjusts the voltages intelligently and maintains the APD's optimal working status.
Resumo:
IEECAS SKLLQG