43 resultados para nucleus of the solitary tract
Resumo:
Background: Some triploid and tetraploid clones have been identified in the gynogenetic gibel carp, Carassius auratus gibelio Bloch, by karyotypic and cytologic analyses over many years. Further, 5-20% males and karyotypic diversity have been found among their natural and artificial populations. However, the DNA contents and the relation to their ploidy level and chromosome numbers have not been ascertained, and whether normal meiosis occurs in spermatogenesis needs to be determined in the different clones. Methods: The sampled blood cells or sperms were mixed with blood cells from chicken or individual gibel carp and fixed in 70% pre-cooled ethanol overnight at 4degreesC. The mixed cell pellets were washed 2-3 times in 1x phosphate buffered saline and then resuspended in the solution containing 0.5% pepsin and 0.1 M HCl. DNA was stained with propidium iodide solution (40 mug/mL) containing 4 kU/ml RNase. The measurements of DNA contents were performed with Phoenix Flow Systems. Results: Triploid clones A, E, F, and P had almost equal DNA content, but triploid clone D had greater DNA content than did the other four triploid clones. DNA content of clone M (7.01 +/- 0.15 pg/nucleus) was almost equal to the DNA content of clone D (5-38 +/- 0.06 pg/nucleus) plus the DNA content of common carp sperm (1.64 +/- 0.02 pg/nucleus). The DNA contents of sperms from clones A, P, and D were half of their blood cells, suggesting that normal meiosis occurs in spermatogenesis. Conclusions: Flow cytometry is a powerful method to analyze genetic heterogeneity and ploidy level among different gynogenetic clones of polyploid gibel carp. Through this study, four questions have been answered. (a) The DNA content correlation among the five triploid clones and one multiple tetraploid clone was revealed in the gibel carp, and the contents increased with not only the ploidy level but also the chromosome number. (b) Mean DNA content was 0.052 pg in six extra chromosomes of clone D, which was higher than that of each chromosome in clones A, E, F, and P (about 0.032 pg/ chromosome). This means that the six extra chromosomes are larger chromosomes. (c) Normal meiosis occurred during spermatogenesis of the gibel carp, because DNA contents of the sperms from clones A, P, and D were almost half of that in their blood cells. (d) Multiple tetraploid clone M (7.01 +/- 0.15 pg/nucleus) contained the complete genome of clone D (5.38 +/- 0.06 pg/nucleus) and the genome of common carp sperm (1.64 +/- 0.02 pg/nucleus). Cytometry Part A 56A:46-52, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
Isotope yield distributions in the multifragmentation regime were studied with high-quality isotope identification, focusing on the intermediate mass fragments (IMFs) produced in semiviolent collisions. The yields were analyzed within the framework of a modified Fisher model. Using the ratio of the mass-dependent symmetry energy coefficient relative to the temperature, a(sym)/T, extracted in previous work and that of the pairing term, a(p)/T, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields were corrected for these effects. For a given I = N - Z value, the corrected yields of isotopes relative to the yield of C-12 show a power law distribution Y (N, Z)/Y(C-12) similar to A(-tau) in the mass range 1 <= A <= 30, and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted tau value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple deexcitation model, with which the power law distribution of the primary isotopes is determined to be tau(prim) = 2.4 +/- 0.2, suggesting that the disassembling system at the time of the fragment formation is indeed at, or very near, the critical point.
Experimental study of the U-238(S-36,3-5n)(269-271)Hs reaction leading to the observation of (270)Hs
Resumo:
The deformed doubly magic nucleus (270)Hs has so far only been observed as the four-neutron (4n) evaporation residue of the reaction Mg-26+Cm-248, where a maximum cross section of 3 pb was measured. Theoretical studies on the formation of (270)Hs in the 4n evaporation channel of fusion reactions with different entrance channel asymmetry in the framework of a two-parameter Smoluchowski equation predict that the reactions Ca-48+Ra-226 and S-36+U-238 result in higher cross sections due to lower reaction Q values, in contrast to simple arguments based on the reaction asymmetry, which predict opposite trends. Calculations using HIVAP predict cross sections for the reaction S-36+U-238 that are similar to those of the Mg-26+Cm-248 reaction. Here, we report on the first measurement of evaporation residues formed in the complete nuclear fusion reaction S-36+U-238 and the observation of (270)Hs, which is produced in the 4n evaporation channel, with a measured cross section of 0.8(-0.7)(+2.6) pb at 51-MeV excitation energy. The one-event cross-section limits (68% confidence level) for the 3n, 4n, and 5n evaporation channels at 39-MeV excitation energy are 2.9 pb, while the cross-section limits of the 3n and 5n channel at 51 MeV are 1.5 pb. This is significantly lower than the 5n cross section of the Mg-26+Cm-248 reaction at similar excitation energy.
Resumo:
The proton-rich isotope Ho-148 was produced via the fusion-evaporation reaction Mo-92 (Ni-58, 3p1n). The beta-delayed proton decay of Ho-146 was studied by proton-gamma coincidence measurements using a He-jet tape transport system. The gamma-transitions in Tb-145 following the proton emissions were observed, and the beta-delayed proton branching ratios to the final states in the grand-daughter nucleus Tb-145 were determined. According to the relative branching ratios, the ground-state spin of Ho-146 has been proposed and the possible configuration discussed.
Resumo:
The beta-delayed proton decay of Er-147 is studied experimentally using the Ni-58+Mo-92 reaction at a beam energy of 383 MeV. Based on a He-jet apparatus coupled with a tape transport system, the beta-delayed proton radioactivities both from the nu s(1/2) ground state and the nu h(11/2) isomer in Er-147 are identified by proton-gamma coincidence measurements. By analyzing the time distribution of the 4(+) -> 2(+) gamma transition in the grand-daughter nucleus Dy-146, a half-life of 1.6 +/- 0.2 s is determined for the nu h(11/2) isomer in Er-147. The half-life for the ground state of Er-147 is estimated to be 3.2 +/- 1.2 s.
Resumo:
Two approximate formulae to calculate the eigenvalues of pure quadrupole interaction in Mossbauer effect studies have been proposed and the eigenvalue coefficients in the formulae have been given for various excited states and ground states of the nucleus with different spin. All the eigenvalues of pure quadrupole interaction between both excited state and ground state of nucleus with spin I = 3/2 divided-by 9/2 and the electric-field gradient with different asymmetry parameter (eta = 0 divided-by 1.0) have been calculated by these formulae. The results show that the accuracies in all the calculations are more satisfactory or same in comparison with those obtained by the formula of Shenoy and Dunlap, especially when the asymmetry parameter of electric-field gradient is larger than 0.8 for the nucleus with spin I = 5/2.
Resumo:
In this study, at proper dosage of ultraviolet (UV) irradiation (180 sec: 36,000 erg/mm(2)), sperm chromosomes of left-eyed flounder, Paralichthys olivaceus, were inactivated, while spermatozoa maintained ability to move and inseminate eggs. Gynogenetic haploids were detected by morphological observation, chromosome counting, and flow cytometer analysis. The ultrastructure of treated sperm was observed under scanning electronic microscope (SEM) and transmission electronic microscope (TEM). The results showed that after being irradiated at lower dosage of irradiation (0-180 sec: 0-36,000 erg/mm(2)), the surface structure of spermatozoa was not affected by UV irradiation, while the inner structures including membrane system and karyoplasm denseness of treated spermatozoa were little changed. However, obvious changes were observed in their membrane system, mitochondria, and nucleus if the dosage of irradiation increased to 240 sec: 48,000 erg/mm(2) or 300 sec: 60,000 erg/mm(2). The sperm survival rates did not change at the lower dosages of the UV irradiation (0-180 sec: 0-36,000 erg/mm(2)) but decreased as the irradiation dosage increased. The motility of treated sperm was lower than that of control group in general but did not change with UV irradiation dosage increasing at the certain range of 0-300 sec: 0-60,000 erg/mm(2).
Resumo:
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a flat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected; the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Set. D, 47(12): 1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if tire density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth's rotation both on the surface wave solutions and the interfacial wave solutions should be considered.
Resumo:
Reproductive failure results in many plant species becoming endangered. However, little is known of how and to what extent pollinator shifts affect reproductive performance of endangered species as a result of the artificial introduction of alien insects. In this study we examined breeding systems, visitor species, visiting frequency and seed set coefficients of Swertia przewalskii in two years that had different dominant pollinator species (native vs. alien). Flowers of this species were protandrous and herkogamous and insects were needed for the production of seeds. The stigmatic receptivity of this species was shorter than for other gentians. No significant difference in seed set coefficient was found for hand-pollinated plants between the two years, indicating that pollinator shift only had a minor effect on this plant's breeding system. The commonest pollinators in 2002 were native bumblebees, alien honeybees and occasional solitary bees, however, only alien honeybees were observed in 2004. The flower visitation rate in both years was relatively high, although the total visit frequency decreased significantly in 2004. The control flowers without any treatment produced significantly fewer seed sets in 2004 than in 2002. In the past decade the seed production of this species may have partly decreased due to pollination by alien honeybees, however, we suggest that they might have acted as alternative pollinators ensuring seed production of S. przewalskii when native pollinators were unavailable. The main reason that this plant is endangered is probably the result of habitat destruction, but changes in land use, namely intensified agricultural practice and unfavorable animal husbandry have also contributed to its decline. We recommend that in-situ conservation, including the establishment of a protected area, is the best way to preserve this species effectively.
Resumo:
To explore the neural mechanisms underlying conditioned immunomodulation, this study employed the classical taste aversion (CTA) behavioral paradigm to establish the conditioned humoral and cellular immunosuppression (CIS) in Wistar rats, by paring saccharin (CS) with intraperitoneal (i.p.) injection of an immunosuppressive drug cyclophophamide (UCS). C-fos immunohistochemistry method was used to observe the changes of the neuronal activities in the rat brain during the acquisition, expression and extinction of the conditioned immunosuppression (CIS). The followings are the main results: 1. Five days after one trial of CS-UCS paring, reexposure to CS alone significantly decreased the level of the anti-ovalbumin (OVA) IgG in the peripheral serum. Two trials of CS-UCS paring and three reexposures to CS not only resulted in further suppression of the primary immune response, but also reduced the numbers of peripheral lymphocytes and white blood cells. This finding indicates that CS can induce suppression of the immune function, and the magnitude of the effects is dependent on the intensity of training. 2. On day 5 following two trials of CS-UCS pairing, CS suppressed the spleen lymphocytes responsiveness to mitogens ConA, PHA and PWM, and decreased the numbers of peripheral lymphocytes and white blood cells. On day 15, only PHA induced lymphocyte proliferation was suppressed by CS. On day 30, presentation of CS did not have any effect on these immune parameters. These results suggest that the conditioned suppression of the cellular immune function can retain 5-15 days, and extinct after 30 days. 3. CTA was easily induced by one or two CS-UCS parings, and remained robust even after 30 days. These data demonstrate that CIS can be dissociated from CTA, and they may be mediated by different neural mechanisms. 4. Immunohistochemistry assays revealed a broad pattern of c-fos expression throughout the rat brain following the CS-UCS pairing and reexposure to CS, suggesting that many brain regions are involved in CIS. Some brain areas including the solitary tract nucleus (Sol), lateral parabrachial nucleus (LPB) and insular cortex (IC), showed high level c-fos expressions in response to both CS and UCS, suggesting that they may be involved in the transmission and integration of the CS and UCS signals in the brain. There were dense c-FOS positive neurons in the paraverntricular nucleus (PVN) and supraoptic nucleus (SO) of hypothalamus, subfornical organ (SFO) and area postrema (AP) etc. after two trials of CS-UCS paring and after the reexposure to CS 5 days later, but not in the first training and after the extinction of CIS (30 days later). The results reflect that these nuclei may have an important role in CIS expression, and may also response to the immunosuppression of UCS. The conditioned training and reexposure to CS 5 days later induced high level c-fos expression in the cingulate cortex (Cg), central amygdaloid nucleus (Ce), intermediate part of lateral septal nucleus (LSI) and ventrolateral parabrachial nucleus (VLPB) etc. But c-fos induction was not apparent when presenting CS 30 days later. These brain regions are mainly involved in CIS, and may be critical structures in the acquisition and expression of CIS. Some brain regions, including the frontal cortex (Fr), ventral orbital cortex (VO), IC, perirhinal cortex (PRh), LPB and the medial part of solitary nucleus (SolM), showed robust c-FOS expression following the conditioning training and reexposure to CS both on day 5 and day 30, suggesting that they are critically involved in CTA.