304 resultados para nerve fiber regeneration
Resumo:
We report the experimental generation of a high-quality partially coherent dark hollow beam (DHB) by coupling a partially coherent beam into a multimode fiber (MMF) with a suitable incidence angle. The interference experiment of the generated partially coherent DHB passing through double slits is demonstrated. It is found that the coupling efficiency of the MMF, the quality, and the coherence of the generated partially coherent DHB are closely controlled by the coherence of the input beam. (c) 2008 Optical Society of America.
Resumo:
Temperature and stress tunabilities of long-period Bragg gratings imprinted in Panda fiber are presented in this letter. It is shown that the temperature and strain response of the resonance peaks for fast and slow axes are different not only in their magnitudes but also in the signs of the slope. Furthermore, the characteristics for different order modes are different both in magnitudes and signs. The complicated phenomena are discussed by using a simplified model.
Resumo:
A novel fiber Bragg grating temperature sensor is proposed and experimentally demonstrated with a long-period grating as a linear response edge filter to convert wavelength into intensity-encoded information for interrogation. The sensor is embedded into an aluminum substrate with a larger coefficient of thermal expansion to enhance its temperature sensitivity. A large dynamic range of 110 degreesC and a high resolution of 0.02 degreesC are obtained in the experiments. The technique can be used for multiplexed measurements with one broadband source and one long-period grating, and therefore is low Cost. (C) 2004 Society of PhotoOptical Instrumentation Engineers.
Resumo:
A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel scheme is proposed to transform a Gaussian pulse to a millimeter-wave frequency modulation pulse by using an apodized Moire fiber Bragg grating in radio-over-fiber system. The relation between the input and output pulses is analyzed theoretically by Fourier transformation method and the requirements for the proposed fiber grating are presented. An apodized Moire fiber Bragg grating is designed and its characteristics are studied. It is shown that the proposed device is feasible, and the new scheme is believed to be an effective solution for the generation of millimeter-wave sub-carrier in future radio-over-fiber systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Based on the Mach-Zehnder effect between the core mode and the cladding modes, the interference fringes are formed by a pair of cascaded long-period fiber gratings (CLPFGs). Theoretical analyses show that the spectral spacing and the wavelength of these fringes are functions of the waveguide dispersion factor gamma, which is a characterizing parameter to LPFG and with theoretical and applicational significance. By measuring the characteristics of the transmission spectra of CLPFGs, the absolute value of gamma can be obtained. At the same time, the thermo-optic coefficient of effective refractive index difference between core and cladding modes, p, can also be obtained by measured the temperature sensitivity of these fringes. In the experiments, \gamma\ and mu were measured by this method to be 0.874 and 4.08 x 10(-5) degreesC(-1), respectively, for LPFGs with period of 450 mum and with a HE14 resonant peak at 1554 nm. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The effect of group delay ripple of chirped fiber gratings on composite second-order (CSO) performance in optical fiber CATV system is investigated. We analyze the system CSO performances for different ripple amplitudes, periods and residual dispersion amounts in detail. It is found that the large ripple amplitude and small ripple period will deteriorate the system CSO performance seriously. Additionally, the residual dispersion amount has considerable effect on CSO performance in the case of small ripple amplitude and large ripple period. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The dispersion compensation characteristics of the chirped fiber grating (CFG) for different dispersion compensation positions are analyzed in externally modulated cable television (CATV) lightwave system and the analytic expression of the composite second order (CSO) distortion is derived. The analyses give a reasonable explanation for the position-dependent effect of CFG dispersion compensator, which was found in practical systems. Moreover, the theoretical result is also verified by an experiment. It is believed that the theory will be helpful in designing optical CATV fiber links with nodes at proper positions both for intensity amplification and dispersion compensation.
Resumo:
The polarization characteristics of electro-optical (EO) switches using fiber Sagnac interferometer (FSI) structures are theoretically investigated. Analytical solutions of output fields are presented when the twists and birefringence in a Sagnac loop are considered. Numerical calculations show that the twists of fiber, the orientation of the inserted phase retarder, and the splitting ratio of the coupler will influence both the output intensity and the output polarization properties of the proposed switch. A polarization-independent EO switch based on a Sagnac interferometer and a PUT bar was experimentally implemented, which showed good coincidence with the analytical results. The experiment showed a switch with 22 dB extinction ratio and less than 31.1 ns switching time. (c) 2006 Optical Society of America.
Resumo:
We demonstrate theoretically that the negatively chirped femtosecond laser pulse can be spectrally narrowed by cross-phase modulation. The new view is well Supported by numerical simulation. The negative chirp method in fibers might be useful in all optical wavelength switching applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The pulse compression induced by cross-phase modulation in birefringent dispersion decreasing fiber is discussed theoretically by solving the coupled Schrodinger equations which include the contribution of the high-order non-linear effects, and third-order dispersion. In particular, it is found that a high quality compressed signal pulse can be obtained by a pump pulse of low intense through the technique. The dependence of optimum compression on the non-linear factor N, time delay tau(d) and the dispersive ratio f is also discussed in detail. (c) 2005 Elsevier B.V. All rights reserved.