56 resultados para negative space
Resumo:
The fractional Fourier transform of an object can be observed in the free-space Fresnel diffraction pattern of the object. (C) 1997 Optical Society of America
Resumo:
The ambiguity function was employed as a merit function to design an optical system with a high depth of focus. The ambiguity function with the desired enlarged-depth-of-focus characteristics was obtained by using a properly designed joint filter to modify the ambiguity function of the original pupil in the phase-space domain. From the viewpoint of the filter theory, we roughly propose that the constraints of the spatial filters that are used to enlarge the focal depth must be satisfied. These constraints coincide with those that appeared in the previous literature on this topic. Following our design procedure, several sets of apodizers were synthesized, and their performances in the defocused imagery were compared with each other and with other previous designs. (c) 2005 Optical Society of America.
Resumo:
We explore the use of the Radon-Wigner transform, which is associated with the fractional Fourier transform of the pupil function, for determining the point spread function (PSF) of an incoherant defocused optical system. Then we introduce these phase-space tools to analyse the wavefront coding imaging system. It is shown that the shape of the PSF for such a system is highly invarient to the defocous-related aberrations except for a lateral shift. The optical transfer function of this system is also investigated briefly from a new understanding of ambiguity function.
Resumo:
In LiNbO3:Fe, anomalous behaviour of grating erasure is observed with different wavelenghts, i.e. rapid grating erasure in the short wavelength range, which deviates from the results predicted by the electron transport band model. The deviation is related to the coexistance of electrons and holes in photorefraction, and charge-transfer process including electrons and hole has been proposed. The electron and hole contributions to photo-excitation coefficient S of the Fe centre on the wavelength.
Resumo:
We propose a novel structure of planar optical configuration for implementation of the space-to-time conversion for femtosecond pulse shaping. The previous apparatuses of femtosecond pulse shaping are 4f Fourier-transforming type system that is usually large, expensive, difficult to align. The planar integration of free-space optical systems on solid substrates is an optical module with the attractive advantages of compact, reliable and robust. This apparatus is analyzed in details and the design of the particular lens for femtosecond pulse shaping based on planar optics is presented. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
For the first time to our knowledge, in a high-energy laser facility with an output energy of 454.37 J, by using a temporal-space-transforming pulse-shaping system with our own design of a knife-edge apparatus, we obtained a quasi-square laser pulse. (c) 2005 Optical Society of America.
Resumo:
In this paper we theoretically investigate a photonic crystal with dielectric rods in a honeycomb lattice. Two left-handed frequency regions are found in the second and third photonic band by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Subwavelength imaging by the photonic crystal flat lens are systematically studied by numerical simulations using the multiple scattering method. Different from the photonic crystals with noncircular dielectric rods in air, this structure is almost isotropic at the optimal frequency for superlensing. As a comparison, flat slab focusing is also demonstrated at other frequencies in the two left-handed regions. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The effective refractive index of a kind of granular composite, which consists of granular metallic and magnetic inclusions with different radius embedded in a host medium, is theoretically investigated. Results show that for certain volume fractions of these two inclusions, the negative permittivity peak shifts to low frequency and the peak value increases with increasing radius ratio of the radius of magnetic granulae to that of metallic granulae. Simultaneously, peak value of permeability decreases with the radius ratio, and value peak shifts to high frequency with increasing volume fraction of magnetic inclusion. Therefore, the radius ratio can affect the effective refractive index considerably, and it is found that by adjusting the radius ratio, the refractive index may change between negative and positive values for certain volume fractions of the two inclusions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We deliver the general conditions on the synthetic proportions for a homogeneous mixture of ferro- and nonmagnetic substances to become left-handed. As an alternative for left-handed metamaterials, we consider mixing ferromagnetic materials with nonmagnetic microscopic particles. In the mixture, the ferromagnetic material provides the needed permeability via domain wall resonances at high frequencies, whereas the nonmagnetic material gives the required permittivity. Using the effective medium theory, we have found that when the concentration of the nonmagnetic particles falls into a certain range, the refractive index of the mixture is negative, n < 0, which includes the double negative ( epsilon < 0 and mu < 0) and other cases ( e. g. epsilon < 0 and mu > 0). We finally give the requirements on the microscopic material properties for the ferromagnetic materials to reach the domain wall resonances at high frequencies.