41 resultados para motion-based driving simulator
Resumo:
We report the construction of hybrid permeable-base transistors, in vertical architecture, using tris(8-hydroxyquinoline) aluminum as emitter, a thin gold layer as base, and n-type silicon as collector. These transistors present high common-base current gain, can be operated at low driving voltages, and allow high current density.
Resumo:
Comb-like polymers (CPs) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo(oxyethylene) side chains of the type -O(CH2CH2O)(n)CH3 were synthesized and characterized, and complexed with lithium salts to form amorphous polymer electrolytes. Maximum conductivity close to 1.38 x 10(-4) S/cm was achieved at room temperature and at a [Li]/[EO] ratio (EO = ethylene oxide) of about 0.066. The temperature dependence of ionic conductivity suggested that the ion transport was controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moved to a higher salt concentration as the temperature increased, indicating that a larger number of charge carriers can be transferred through polymer chains, of which free volume is increased at higher temperature. IR results indicated that the ester in CPs might decompose at 140 degrees C and reproduce the maleic anhydride ring.
Resumo:
Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with lithium salts to form amorphous polymer electrolytes. CP/salt complexes showed conductivity up to 10(-5)Scm(-1) at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.
Resumo:
Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type-O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with LiNO3 to form an amorphous polymer electrolyte. CP/salt complexes showed conductivity up to 10(-5) S/cm at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.
Resumo:
A new amorphous comblike polymer(CBP) based on methylvinyl ether/maleic anhydride alternating copolymer backbone and on oligooxyethylene side chain was synthesized The dynamic mechanical properties of CBP-Li salt complexes showed that there were two glass transitions. There are two peaks in the plot of the ionic conductivity vs. Li salt concentration. The plot of Log sigma against 1/(T-To) shows an unusual dual VTF behavior when using sidechain glass transition temperature (T-beta) as To.
Resumo:
A unified criterion is developed for initiation of non-cohesive sediment motion and inception of sheet flow under water waves over a horizontal bed of sediment based on presently available experimental data. The unified threshold criterion is of the single form, U-o = 2 pi C[1 + 5(T-R/T)(2)](-1/4), where U-o is the onset velocity of sediment motion or sheet flow, T is wave period, and C and T-R are the coefficients. It is found that for a given sediment, U-o initially increases sharply with wave period, then gradually approaches the maximum onset velocity U-o = 2 pi C and becomes independent of T when T is larger. The unified criterion can also be extended to define sediment initial motion and sheet flow under irregular waves provided the significant wave orbital velocity and period of irregular waves are introduced in this unified criterion.
Resumo:
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-epsilon turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
Resumo:
提出并研制一种基于自适应移动机构的管内探查机器人。通过对机器人传动机构的设计,实现了在不增加驱动电动机数量的前提下,机器人具有适应不同管道直径的能力。机器人的传动机构能够在管道直径改变时,自动地改变行走部件的输出形式以克服障碍,完成越障任务。在没有应用链式多节构型的情况下,机器人配备一个驱动电动机就能够完成越障任务,改善了传统螺旋驱动式机器人越障能力不高的问题,同时也提高了对驱动电动机的使用效率。为了分析试验中发现的机器人保持架自转现象,对机器人进行运动分析,并由分析结果对相关部分进行改进。试验结果表明,该机器人能够在内径为190 mm和180 mm的管道中行进,并能够顺利通过两节管道间形成的同心台阶障碍,验证了自适应移动机构的行走能力。
Resumo:
爬行运动为轮桨腿一体两栖机器人基本运动模式之一。以机器人爬行运动为研究对象,分析了两栖机器人爬行运动机理,并建立了其典型驱动单元的运动学模型;根据机器人不同爬行运动状态,提出了基于轮桨和足板不同步态形式的运动规划策略;采用虚拟样机技术,对不同爬行状态下的步态规划效果进行了仿真试验分析和验证。试验结果表明,在规划的步态下,轮桨腿一体两栖机器人具有良好的爬行稳定性、转向机动性和越障能力。
Resumo:
In this paper, a disturbance controller is designed for making robotic system behave as a decoupled linear system according to the concept of internal model. Based on the linear system, the paper presents an iterative learning control algorithm to robotic manipulators. A sufficient condition for convergence is provided. The selection of parameter values of the algorithm is simple and easy to meet the convergence condition. The simulation results demonstrate the effectiveness of the algorithm..
Resumo:
Facing the problems met in studies on predominant hydrocarbon migration pathways, experiments and numerical simulating were done in this thesis work to discuss the migration mechanisms. The aim is to analyze quantitatively the pathway pattern in basin scale and to estimate the hydrocarbon loss on the pathway that offer useful information for confirming the potential hydrocarbon accumulation. Based on our understandings on hydrocarbon migration and the fluid dynamic theory, a series of migration experiments were designed to observe the phenomena where kerosene is used as draining phase driven only by buoyancy force that expulses pore water. These experiments allow to study the formation of migration pathways, the distribution of non-wetting oil along these pathways, and the re-utilizing of previously existing pathways marked by residual traces etc. The types of pattern for migration pathways may be characterized by a phase diagram using two dimensionless numbers: the capillary number and the Bond number. The NMR technique is used to measure the average saturation of residual oil within the pathways. Based our experiment works and percolation concept, a numerical simulation model were proposed and realized. This model is therefore called as BP (Buoyancy Percolation) simulator, since buoyancy is taken as the main driving force in hydrocarbon migration. To make sure that BP model is applicable to simulate the process of oil secondary migration, the experimental phenomena are compared with those simulated with BP model by fractal method, and the result is positive. After then, we use BP simulator to simulate the process of migration of oil in the porous media saturated with water at different scale. And the results seem similar to those cited in literatures. In addition, our software is applied in Paris basin to predict the pathway of hydrocarbon migration happened in the Middle Jurassic reservoirs. It is found that the results obtained with our BP model are generally agree with Hindle (1997) and Bekeles'(1999), but our simulated migration pathway pattern and migration direction seem more reasonable than theirs.