56 resultados para modos de plasmon (modo TM01)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells. The physical mechanism and the mode distribution of the SRSPP excited in the cell device were analyzed, and reveal that the SRSPP-assisted broadband absorption enhancement peak could be tuned by tailoring the parameters of the nanopatterned metallic structure. Three-dimensional finite-difference time domain calculations show that this plasmonic structure can enhance the optical absorption of polymer-based photovoltaics by 39% to 112%, depending on the nature of the active layer (corresponding to an enhancement in short-circuit current density by 47% to 130%). These results are promising for the design of organic photovoltaics with enhanced performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface plasmon resonances of arrays of parallel copper nanowires, embedded in ion track-etched polycarbonate membranes, were investigated by systematic changes of nanowires’ topology and arrays area density. The extinction spectra exhibit two peaks which are attributed to interband transitions of Cu bulk metal and to a dipolar surface plasmon resonance, respectively. The resonances were investigated as a function of wire diameter and length, mean distance between adjacent wires, and angle of incidence of the light field with respect to the long wire axis. The dipolar peak shifts to larger wavelengths with increasing diameter and length, and diminishing mean distance between adjacent wires. Additionally, the shape effect on the dipolar peak is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, electrochemical surface plasmon resonance (SPR) method was first used to detect enzymatic reaction in bilayer lipid membrane (BLM) based on immobilizing horseradish peroxidase (HRP) in the BLMs supported by the redox polyaniline (PAn) film. By SPR kinetic curve in situ monitoring the redox transformation of PAn film resulted from the reaction between HRP and PAn, the enzymatic reaction of HRP with H2O2, was successfully analyzed by electrochemical SPR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the study of protein conformational change by Au nanoparticles (AUNPs)-amplified surface plasmon resonance (SPR) spectroscopy. Taking cytochrome c (Cyt c) as an example, this paper gives a detailed description of the construction of metal-protein-metal sandwich nanostructure consisting of an Au film underlayer, a cytochrome c intermediate layer and an AuNPs upper layer. The incorporation of AuNPs into SPR biosensing results in increased SPR sensitivity to protein conformational change as demonstrated by acid denaturation of Cyt c. It suggests the conformational change of surface-confined Cyt c leads to the distance and electromagnetic coupling variations of Au film-AuNPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A universal metal-molecule-metal sandwich architecture by the self-assembly of Ag nanoparticles (NPs) and Au NPs of various shapes interconnected with 4-aminothiophenol (4-ATP) molecules was presented. These Ag NPs/4-ATP/Au NPs sandwich structures were characterized by surface enhanced Raman scattering (SERS) using an off-surface plasmon resonance condition. Enhancement factors (EF) on the order of 10(8) for 9b(b(2)) vibration mode were observed for the 4-ATP self-assembled monolayers (SAMs) in such sandwich structures. The factors are 2 orders of magnitude larger than that on the monolayer of Au NPs of various shapes under similar condition. More importantly, remarkable increase in the intensity of b(2) vibrational modes, which is characteristic of the charge transfer (CT) behavior between metal NPs and 4-ATP molecules, was observed in these sandwich structures under 1064 nm excitation. The obtained EF on these sandwich structure for 9b(b(2)) is larger than that for 7a vibration mode by a factor of similar to 10(2), demonstrating the importance of the contribution of the CT mechanism and the CT behavior of metal contacts, which play a significant role in metal-molecule-metal nanosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-Actinin has been shown to be capable of interacting with some special membrane phospholipids directly, which is important for its function. In this study, hybrid bilayer membranes composed of negatively charged lipids are constructed on the surface plasmon resonance gold substrate and on the gold electrode, respectively, and the interaction between alpha-actinin and negatively charged lipids membrane is investigated by surface plasmon resonance, cyclic voltammetry and electrochemical impedance spectroscopy methods. alpha-Actinin is proved to be able to interact with the negatively charged lipids membrane directly. It can also insert at least partly into the membrane or lead to some defect or lesion in the membrane, which increase the permeability of the membrane. This study would bring some insight on the interaction between the alpha-actinin and the cell membranes in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small molecules are difficult to detect by conventional surface plasmon resonance (SPR) spectroscopy due to the fact that the changes in the refractive index resulted from the binding process of small biomolecules are quite small. Here, we report a simple and effective method to detect small biomolecule using SPR spectroscopy and electrochemistry by catalyzed deposition of metal ions on SPR gold film. As an example, the ascorbic acid-mediated deposition of Ag on gold film was monitored by in situ SPR spectrum. The deposition of Ag atom on gold film resulted in an obvious decrease of depth in SPR angular scan curves of reflectance intensity and minimum reflectivity angle. The depth change of the SPR reflectance intensity and minimum reflectivity angle curves mainly relied on the amount of Ag atom deposited on gold film that can be controlled by the concentration of ascorbic acid. By monitoring the deposition of Ag atom on gold film, ascorbic acid was detected in the concentration range of 2 x 10(-5) M to 1 x 10(-3) M. After each of detections, the SPR sensor surface was completely regenerated by a potential step that stripped off the Ag atom. Furthermore, the regeneration process of the sensor surface provides the feasibility for detecting the concentration of ascorbic acid by electrochemical method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry. Compared with the adsorption of Cyt c on DNA monolayer, this composite multilayer film can obviously enhance the amount of immobilized Cyt c confirmed by SPR reflectivity-incident angle (R-theta) curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold nanoparticles (3.1-5.0 nm in size) surface-derivatized with both electroactive and nonelectroactive self-assembled monolayers were synthesized. The surface-derivatized electroactive particles can be easily oxidized/reduced at an electrode surface based on the diffusion-controlled current-voltage curve observed in cyclic voltammetry measurements. Spectroelectrochemical investigation demonstrated that the maximum absorbance of the nanoparticles in their oxidized state red-shifted compared with their reduced state to a different extent according to their size distribution. In the case of the particles surface-derivatized with nonelectroactive monolayers, much less shift was observed. This study showed that surface plasmon absorbance of gold nanoparticles was not only related to core charge states but was also influenced by surface charge states as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the multidomain structure of Pseudomonas aeruginosa exotoxin A, a fusion protein termed rPEA has been constructed, which is expected to serve as a gene carrier in vitro. The expression and purification of rPEA are described. The basal properties of rPEA as a gene carrier are evaluated by investigating its interaction with plasmid DNA and mimic biomembrane by surface plasmon resonance (SPR) and electrochemical methods. rPEA is proved to be able to bind with plasmid DNA with high affinity. It can also interact with lipid membrane and increase permeability of the membrane, so the probe molecules can easily reach the gold surface and exhibit the electrochemical response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver underpotential deposition (UPD)-induced surface atomic rearrangement of polycrystalline gold nanofilms was probed with use of surface plasmon resonance spectroscopy (SPRs) as a novel probe tool in combination with cyclic voltammetry. Interestingly, upon repetitive electrochemical UPD and stripping of Ag, the surface structure of the resulting bare Au film is rearranged due to strong adatom-substrate interactions, which causes a large angle shift of SPR R-theta curves, in a good linear relationship with the number of UPDs, to a lower SPR angle. The n, K values of the surfacial Au monolayers before and after the repetitive Ag UPD and stripping for 27 times are found to be 0.133, 3.60 and 0.565, 9.39, respectively, corresponding to the huge shift of 1.61degrees to the left of the SPR minima. Cyclic voltammetry experiments in 0.10 M H2SO4 are carried out before and after the UPD treatment to examine the quality of the whole electrode surface and confirmed this change. To correlate the angle change in SPRs with the profile change in the cyclic voltammogram, the UPD treatment was also performed on a Au(111) textured thin film. It was therefore confirmed that the resonance position of the SPR spectrum is very sensitive to the surface crystallographic orientation of the bare Au substrates. Some surface atomic rearrangement can cause a pronounced SPR angle shift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternate layer-by-layer (L-by-L) polyion adsorption onto gold electrodes coated with chemisorbed cysteamine gave stable, electroactive multilayer films containing calf thymus double stranded DNA (CT ds-DNA) and myoglobin (Mb). Direct, quasi-reversible electron exchange between gold electrodes and proteins involved the Mb heme Fe2+/Fe3+ redox couple. The formation of L-by-L (DNA/Mb), films was characterized by both in situ surface plasmon resonance (SPR) monitoring and cyclic voltammetry (CV). The effective thickness of DNA and Mb monolayers in the (DNA/Mb)l bilayer were 1.0 +/- 0.1 and 2.5 +/- 0.1 mn, corresponding to the surface coverage of similar to65% and similar to89% of its full packed monolayer, respectively. A linear increase of film thickness with increasing number of layers was confirmed by SPR characterizations. At pH 5.5, the electroactive Mb in films are those closest to the electrode surface; additional protein layers did not communicate with the electrode. CV studies showed that electrical communication might occur through hopping conduction via the electrode/base pair/Mb channel, thanks to the DNA-Mb interaction. After the uptake of Zn2+, a special electrochemical behavior, where MbFe(2+) acts as a DNA-binding reduction catalyst in the Zn2+-DNA/Mb assembly, takes place.