134 resultados para marginal zone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, the coordinated measurements of the temperature profile inside the liquid bridge and the boundary variation of Free surface, in addition to other quantities, were obtained in the same time for the half floating zone convection. The results show that the onset of free surface oscillation is earlier than the one of temperature oscillation during the increasing of applied temperature difference, and the critical Marangoni numbers, defined usually by temperature measurement, are larger than the one defined by free surface measurement, and the difference depends on the volume of liquid bridge. These results induce the question, ''How to determine experimentally the critical Marangoni number?'' Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady and two-dimensional numerical simulation is applied to study the transition process from steady convection to turbulence via subharmonic bifurcation in thermocapillary convection of a liquid bridge in the half-floating zone. The results of numerical tests show clearly the fractal structure of period-doubling bifurcations, and frequency-locking at f/4, f/8, f/16 with basic frequency f is observed with increasing temperature difference. The Feigenbaum universal constant is given by the present paper as delta(4) = 4.853, which can be compared with the theoretical value 4.6642016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordinated measurement of temperature, velocity and free surface oscillation were obtained by using the drop shaft facility for microgravity experiments of half floating zone convection. The ground-based studies gave transition from steady to oscillatory convection for multi-quantities measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The g-jitter influence on thermocapillary convection and critical Marangoni number in a liquid bridge of half-floating rone was discussed in the low frequency range of 0.4 to 1.5 Hz in a previous paper. This paper extended the experiments to the intermediate frequency range of 2 to 18 Hz, which htrs often been recorded as vibration environment of spacecrafts. The experiment was completed on the deck of a vibration machine, which gave a periodical applied acceleration to simulate the effects of g-jitter. The experimental results in the intermediate frequency range are different from that in the low frequency range. The velocity field and the shape of the free surface have periodical fluctuations in response to g-jitter. The amplitude of the periodical varying part of the temperature response decreases obviously with increasing frequency of g-jitter and vanishes almost when the frequency of g-jitter is high enough. The critical Marangoni number is defined to describe the transition from a periodical convection in response to g-jitter to an oscillatory convection due to internal instability, and will increase with increasing g-jitter frequency. According to the spectral analysis, it can be found that the oscillatory part of temperature is a superposition of two harmonic waves if the Marangoni number is larger than a critical value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady and axisymmetric crystal growth process of floating zone model was studied numerically to concern with the influence of convection and phase change on effective segregation. An iteration method of numerical simulation considering both thermocapillary and buoyancy effects for GaAs crystal growth gave the effective segregation coefficient, which was compared with the space experiment of GaAs on board the Chinese recoverable satellite. The calculated segregation coefficient of a two-dimensional model was found to be smaller than the one suggested by space experiment with the simplified assumption of an one-dimensional model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravity may influence the velocity and temperature distributions, bouyancy may induce Rayleigh instability and the instability may be excited due to the change of free surface shape associating with gravity in the thermocapillary convection. These effects have been studied in the present paper. The results show that gravity may have an important effect in thermocapillary oscillatory convection even for the cases of small Bond number experiments either on the ground or in space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of low gravity level on crystal growth in the floating zone, which involves thermocapillary convection, phase change convection, thermal and solutal diffusion, is investigated numerically by a finite element method for the silicon crystal growth process. The velocity, temperature, concentration fields and phase change interfaces depending on heating temperature and growth rates are analyzed. The influence of low gravity level on the concentration is studied especially. The results show that the non-uniformities of concentration are about 10(-3) for growth rate nu(p) = 5.12 x 10(-8) m/s, 10(-2) for nu(p) = 5.12 x 10(-7) m/s and relatively larger for larger growth rate in the gravity level g = 0-9.8 m/s2. The thermocapillary effect is strong in comparison with the Bridgman system, and the level of low gravity is relatively insensitive for lower growth rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projecting an orthographical grating mask (20pl/mm) on the surface of a small liquid bridge and receiving the reflected distortion image, one can calculate out reversely the shape of free surface of a liquid bridge. In this way we measured the surface shape of a small floating zone and the two-dimensional deformation of its vibration. The mechanism of thermocapillary oscillatory convection and the three-dimensional variation of the free surface are revealed experimentally. The principle for space experiment has been studied in our laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floating zone crystal growth in microgravity environment is investigated numerically by a finite element method for semiconductor growth processing, which involves thermocapillary convection, phase change convection, thermal diffusion and solutal diffusion. The configurations of phase change interfaces and distributions of velocity, temperature and concentration fields are analyzed for typical conditions of pulling rates and segregation coefficients. The influence of phase change convection on the distribution of concentration is studied in detail. The results show that the thermocapillary convection plays an important role in mixing up the melt with dopant. The deformations of phase change interfaces by thermal convection-diffusion and pulling rods make larger variation of concentration field in comparison with the case of plane interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free surface deformations of thermocapillary convection in a small liquid bridge of half floating-zone are studied in the present paper. The relative displacement and phase difference of free surface oscillation are experimentally studied, and the features of free surface oscillation for various applied temperature differences are obtained. It is discovered that there is a sort of surface waves having the character of small perturbation, and having a wave mode of unusually large amplitude in one corner region of the liquid bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element algorithm is used to analyze the process of floating zone crystal growth under microgravity. The effect of phase change convection coupled with surface tension convection is considered. The results show that the rate of crystal growth is very important. The single-crystal-melt interface is steeper than the feed-melt interface during the process of crystal growth. When the rate exceeds a critical value, the Marangoni vortex near the feed-melt interface will become so large that a secondary vortex will exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the conformal mapping method is used to solve the plane problem of an infinite plate containing a central lip-shaped notch subjected to biaxial loading at a remote boundary or a surface uniform pressure on the notch. The stress intensity factors KI and KII are obtained by the derived complex stress functions. The simple analytical expressions can be applied to the situation of cracks originating from a circular or an elliptical notch. The plastic zone sizes for such notch cracks are subsequently evaluated in light of the Dugdale strip yield concept. The results are consistent with available numerical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cohesive zone characterizations of the interface between metal film and ceramic substrate at micro- and nano-scales are performed in the present research. At the nano-scale, a special potential for special material interface (Ag/MgO) is adopted to investigate the interface separation mechanism by using MD simulation, and stress-separation relationship will be obtained. At the micro-scale, peeling experiment is performed for the Al film/Al2O3 substrate system with an adhesive layer at the interface. Adhesive is a mixture of epoxy and polyimide with mass ratio 1:1, by which a brittle cohesive property is obtained. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling. The experimental result has a similar trend as modeling result for a weak adhesion interface case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview on the onset of thermocapillary oscillatory convection in a floating half zone is provided, and it is a typical subject in the microgravity sciences related to the space materials science, especially the floating zone processing, and also to the microgravity fluid physics. The main interests are focused around the process for onset of oscillatory thermocapillary convection, which is known also as the bifurcation transition from quasi-steady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, such as the Marangoni number, Prandtl number, geometrical parameters, and heat transfer parameters. Recent studies show that, there exists the bifurcation transition from steady and axial symmetric convection to the steady and axial non-symmetric convection before the onset of oscillation in cases of small Prandtl number fluids and in cases of larger Prandtl number fluids of fat liquid bridge with small aspect ratio. The transition process is a strong non-linear process because the velocity deviation has the same order of magnitude as that of an average flow after the onset of oscillation, and unsteady 3-D numerical simulation is suitable to do in depth analysis on strong non-linear process, and leads generally to a better comparison with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microgravity research, as a branch of the advanced sciences and a spe- cialized field of high technology, has been made in China since the late 1980's. The research group investigating microgravity fluid physics consisted of our col- leagues and the authors in the Institute of Mechanics of the Chinese Academy of Sciences (CAS), and we pay special attention to the floating zone convection as our first research priority. Now, the research group has expanded and is a part of the National Microgravity Laboratory of the CAS, and the research fields have been extended to include more subjects related to microgravity science. Howev- er, the floating zone convection is still an important topic that greatly holds our research interests.

目录

1. models of floating zone convection
1.1 floating-zone crystal growth
1.2 physical model
1.3 hydrodynamic model
1.4 mathematical model
references
2. basic features of floating zone convection
2.1 equations and boundary conditions
2.2 simple solutions of fz convection
2.3 solution for two-layers flow
2.4 numerical simulation
2.5 onset of oscillation
references
3. experimental method of fz convection
3.1 ground-based simulation experiments for pr≥1
3.2 temperature and velocity oscillations
3.3 optical diagnostics of free surface oscillation
3.4 critical parameters
3.5 microgravity experiments
3.6 ground-based simulation experiment for pr《1
.references
4. mechanism on the onset of oscillatory convection
4.1 order of magnitude analysis
4.2 mechanism of hydrothermal instability
4.3 linear stability analysis
4.4 energy instability of thermocapillary convection
4.5 unsteady numerical simulation of 2d and 3d
4.6 two bifurcation transitions in the case of small pr number fluid
4.7 two bifurcation transitions in the case of large pr number fluid
4.8 transition to turbulence
references
5. liquid bridge volume as a critical geometrical parameter
5.1 critical geometrical parameters
5.2 ground-based and mierogravity experiments
5.3 instability analyses of a large prandtl number (pr≥1)fluid
5.4 instability analyses of a small prandtl number (pr《1)fluid
5.5 numerical simulation on two bifurcation process
references
6. theoretical model of crystal growth by the floating zone method
6.1 concentration distribution in a pure diffusion process
6.2 solutal capillary convection and diffusion
6.3 coupling with phase change convection
6.4 engineering model of floating zone technique
references
7. influence of applied magnetic field on the fz convection
7.1 striation due to the time-dependent convection
7.2 applied steady magnetic field and rotational magnetic field
7.3 magnetic field design for floating half zone
7.4 influence of magnetic field on segregation
references
8. influence of residual acceleration and g-jitter
8.1 residual acceleration in microgravity experiments
8.2 order of magnitude analyses (oma)
8.3 rayleigh instability due to residual acceleration
8.4 ground-based experiment affected by a vibration field
8.5 numerical simulation of a low frequency g-jitter
8.6 numerical simulation of a high frequency g-jitter
references