40 resultados para lyn kinase, oligodendrocytes, brain, myelination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C6+ ion or Co-60 gamma-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of C-12(6+) ion calculated with respect to Co-60 gamma-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of C-12(6+) ion or Co-60 gamma-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the ability of DNA-PK-deficient (M059J) and -proficient (M059K) cells to undergo the rate of cellular proliferation, cell cycle distribution and apoptosis after 10 Gy X-ray irradiation, and the role of DNA-PK in radiosensitivity. The results showed that M059J cells exhibited hyper-radiosensitivity compared with M059K cells. A strong G2 phase arrest was observed in M059J cells post irradiation. Significant accumulation in the G2 phase in M059J cells was accompanied by apoptosis at 12 h. Altogether, the data suggested that DNA-PK may have two roles in mammalian cells after DNA damage, a role in DNA DSB repair and a second role in DNA-damaged cells to traverse a G2 checkpoint, by which DNA-PK may affect cellular sensitivity to ionizing radiation. 地址: [Li Ning; Zhang Hong; Wang Yanling; Hao Jifang] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China; [Li Ning; Zhang Hong; Wang Yanling; Hao Jifang] Key Lab Heavy Ion Radiat Med Gansu Prov, Lanzhou 730000, Peoples R China; [Li Ning; Wang Yanling] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China; [Wang Xiaohu] Gansu Tumor Hosp, Dept Radiotherapy, Lanzhou 730050, Peoples R China

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a microarray-based surface-enhanced Raman spectroscopic (SERS) assay for detection of kinase functionality and inhibition has been reported. Biotinylated anti-phosphoserinen antibodies mark the phosphorylation and inhibition events and gold nanoparticles are attached to the antibodies by standard avidin-biotin chemistry, followed by silver deposition for SERS signal enhancement. The avidin conjugated fluorescein is used as SERS probe. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP) dependent protein kinase (PKA), its well known substrate, kemptide, and three inhibitors, H89, HA1077, and KN62 have been chosen here to establish the SERS assay. As expected, highly selective inhibition of PKA is demonstrated with the inhibitor H89 and the inhibition assay enable to detect kinase inhibition as well as derive IC50 (half maximal inhibitory concentration) plots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the development of a new class of kinase microarray for the detection of kinase inhibition based on marking peptide phosphorylation/biotinylation events by attachment of gold nanoparticles followed by silver deposition for signal enhancement. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate-dependent protein kinase (PKA), and its well-known substrate, kemptide, were used for the purpose of monitoring phosphorylation and inhibition. As expected, highly selective inhibition of PKA is demonstrated with the four inhibitors: H89, HA1077, mallotoxin, and KN62. Furthermore, an inhibition assay demonstrates the ability to detect kinase inhibition as well as derive IC50 (half-maximal inhibitory concentration) plots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artemia has evolved a unique developmental pattern of encysted embryos to cope with various environmental threats. Cell divisions totally cease during the preemergence developmental stage from gastrula to prenauplius. The molecular mechanism of this, however, remains unknown. Our study focuses on the involvement of p90 ribosomal S6 kinase (RSK), a family of serine/threonine kinase-mediating signal transduction downstream of mitogen-activated protein kinase cascades, in the termination of cell cycle arrest during the post-embryonic development of Artemia-encysted gastrula. With immunochemistry, morphology, and cell cycle analysis, the identified Artemia RSK was established to be specifically activated during the post-embryonic and early larval developmental stages when arrested cells of encysted embryos resumed mitoses. In vivo knockdown of RSK activity by RNA interference, kinase inhibition, and antibody neutralization consistently induced defective larvae with distinct gaps between the exoskeleton and internal tissues. In these abnormal individuals, mitoses were detected to be largely inhibited in the affected regions. These results display the requirement of RSK activity during Artemia development and suggest its role in termination of cell cycle (G(2)/M phase) arrest and promotion of mitogenesis. Our findings may, thus, provide insights into the regulation of cell division during Artemia post-embryonic development and reveal further aspects of RSK functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arginine kinase (AK) is a phosphotransferase that plays a critical role in energy metabolism in invertebrates. in this paper, the full-length cDNA of AI( was cloned from shrimp, Litopenaeus vannamei by using RT-PCR and RACE PCR. It was 1446 bp encoding 356 amino acids, and belongs to the conserved phosphagen kinase family. The quantitative real-time reverse transcription PCR analysis revealed a broad expression of AK with the highest expression in the muscle and the lowest in the skin. The expression of AK after challenge with LIPS was tested in hemocytes and muscle, which indicated that the two peak values were 6.2 times (at 3 h) and 10.14 times (at 24 h) in the hemocytes compared with the control values, respectively (P < 0.05), while the highest expression of AK was 41 times (at 24 h) in the muscle compared with the control (P < 0.05). In addition, AK was expressed in Eschetichia coli by prokaryotic expression plasmid pGEX-4T-2. The recombinant protein was expressed as glutathione s-transferase (GST) arginine kinase (GST-AK) fusion protein, which was purified by affinity chromatography using Glutathione Sepharose 4B. After cleavage from GST by using a site-specific protease, the recombinant protein was identified by ESI-MS and showed AK activity. After treatment with 10 mM ATP, the enzyme activity significantly increased. However, the enzyme activity was inhibited by 10 mM alpha-ketoglutarate, 50 mM glucose and 200 mM ATP. This research suggested that AK might play an important role in the coupling of energy production and utilization and the immune response in shrimps. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arginine kinase (AK) was previously reported as a phosphagen-ATP phosphotransferase found in invertebrates. In this study, an 1184 bp cDNA was cloned and sequenced. It contained an open reading frame of 1068 bp that coded for 356 deduced amino acids of AK in Fenneropenaeus chinensis. The calculated molecular mass of AK is 40129.73 Da and pI is 5.92. The predicted protein showed a high level of identity to known AK in invertebrates and creatine kinase from vertebrates, which belong to a conserved family of ATP:guanidino phospho-transferases. In addition, AK protein in plasma of F. chinensis was identified using two-dimensional electrophoresis (2DE) and electrospray ionization mass spectrometry (ESI-MS) according to the calculated molecular mass and pI. AK was significantly decreased in the plasma of F. chinensis at 45 min and recovered at 3 It after laminarin injection as confirmed by 2DE and ESI-MS. The results showed that AK was one of the most significantly changed proteins on two-dimensional gel in the plasma proteins of F. chinensis at 45 min and 3 It after simulation. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The notochord is one of the diagnostic features of the phylum Chordata. Despite the similarities in the early morphogenetic patterns of the notochords of various chordates, they are strikingly distinct from one another at the histological level. The amphioxus notochord is one example of an evolutionary novelty because it is made up of muscle cells. Our previous expressed sequence tag analysis, targeting messenger RNAs expressed in the adult amphioxus notochord, demonstrated that many muscle-related genes are expressed there. To characterize amphioxus notochord cells and to gain insights into the myogenic program in the notochord, we determined the spatial and temporal expression patterns of these muscle-related genes during amphioxus development. We found that BbNA1 (notochord actin), Amphi-Trop I (troponin I), Amphi-TPmyosin (tropomyosin), Amphi-MHC2 (myosin heavy chain), Amphi-nMRLC (notochord-specific myosin regulatory light chain), AmphinTitin/MLCK (notochord-specific titin/myosin light chain kinase), Amphi-MLP/CRP3 (muscle LIM protein), and Amphi-nCalponin (notochord-specific calponin) are expressed with characteristic patterns in notochord cells, including the central cells, dorsally located cells, and ventrally located cells, suggesting that each notochord cell has a unique molecular architecture that may reflect its function. In addition, we characterized two MyoD genes (Amphi-MyoD1 and Amphi-MyoD2) to gain insight into the genetic circuitry governing the formation of the notochord muscle. One of the MyoD genes (Amphi-MyoD2) is expressed in the central notochord cells, and the coexistence of Amphi-MyoD2 transcripts along with the Amphi-MLP/CRP3 transcripts implies the participation of Amphi-MyoD2 in the myogenic program in the notochord muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins of the DYRK (dual-specificity tyrosine-phosphorylation-regulated kinase) family are characterized by the presence of a conserved kinase domain and N-terminal DH box. DYRK2 is involved in regulating key developmental and cellular processes, such as neurogenesis, cell proliferation, cytokinesis, and cellular differentiation. Herein, we report that the ortholog of DYRK2 found in zebrafish shares about 70% identity with that of human, mouse, and chick. RT-PCR showed that DYRK2 is expressed maternally and zygotically. In-situ hybridization results show that DYRK2 is expressed in somite cells that will develop into muscles. Our results provide preliminary evidence for investigating the in-vivo function of DYRK2 in zebrafish muscle development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress is the most important factor in the vulnerability to depression and other behavioral disorders, but the mechanisms that stress signals are transferred into depression are far from understanding. To date, the neurotransmitters, neurotrophins and signal pathway have been concerned in the topic focusing on the pathophysiology of depression, but there are still many puzzles. Increasing evidence has indicated that the alteration in neuronal plasticity is the “trace” of stress-induced damages. The extracellular signal-regulated protein kinase(ERK)-cyclic-AMP-responsive element(CRE)-binding protein(CREB)signal pathway is a powerful intracellular signal transduction pathway participating in neuronal plasticity which is involved in higher brain cognitive functions such as learning and memory. However, so far, little is known about the role of the ERK-CREB signal pathway in response to stress and emotional modulations. Thus the aim of the study was to systematically investigate the role of the ERK-CEB signal pathway in depressive-like behaviors induced by stress. Depression animal models, antidepressant agent treatment and disruption of signal pathway in specific brain regions were applied. In the present study, three experiment sessions were designed to make sure whether the ERK-CREB signal pathway was indeed one of pathophysiological mechanisms of depressive-like behaviors induced by stress. In experiment one, two different stress animal models were applied, chronic forced swim stress and chronic empty water bottle stress. After stress, all animals were tested behaviorally using open-field, elevated-plus maze and saccharine preference test, and brain samples were processed for determination of ERK, P-ERK, CREB and P-CREB using western blot. The relationships between the proteins of ERK, P-ERK, CREB and P-CREB in the brain and the behavioral variables were also analyzed. In experiment two, rats were treated with antidepressant agent fluoxetine once a day for 21 consecutive days, then the brain levels of ERK, P-ERK, CREB and P-CREB was determined, the depressive-like behaviors were also examined. In experiment three, mitogen activated extracellular-signal-regulated kinase kinase (MEK) inhibitor U0126 was administrated to inhabit the activation of ERK in the hippocampus and prefrontal cortex respectively, then behavioral measurements and protein detection were conducted. The main results of the study were as the following: (1) Chronic forced swim stress induced animals to suffer depression and disrupted the ERK-CREB signal pathway in hippocampus and prefrontal cortex. There were significant correlations between P-ERK2, P-CREB and multiple variables of depressive-like behaviors. (2) Chronic empty water bottle stress did not induce depressive-like behaviors. Such stress decreased the brain level of P-ERK2 in hippocampus and prefrontal cortex, but the level of P-CREB in the hippocampus was increased. (3) The antidepressant agent fluoxetine relieved depressive-like behaviors and increased the activities of the ERK-CREB signal pathway in stressed animals. (4) Animals treated with U0126 injection into hippocampus showed decreased activities of the ERK-CREB signal pathway in the hippocampus, and suffered depression comorbid with anxiety. (5) Animals treated with U0126 injection into prefrontal cortex showed decreased activities of the ERK-CREB signal pathway in the prefrontal cortex, and exhibited depressive-like behaviors. In conclusion, The ERK-CREB signal pathway in the hippocampus and prefrontal cortex was involved in stress responses and significantly correlated with depressive-like behaviors; The ERK-CREB signal pathway in the hippocampus and prefrontal cortex participated in the mechanism that fluoxetine reversed stress-induced behavioral disorders, and might be the target pathway of the therapeutic action of antidepressants; The disruption of the ERK-CREB signal pathway in the hippocampus or prefrontal cortex led to depressive-like behaviors in animals, suggesting that disruption of ERK-CREB pathway in the hippocampus or prefrontal cortex was involved in the pathophysiology of depression, and might be at least one of the mechanisms of depression induced by stress.