144 resultados para long wavelength


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel GeS2-Ga2S3-AgCl chalcohalide glasses had been prepared by melt-quenching technique, and the glass-forming region was determined by XRD, which indicated that the maximum of dissolvable AgCl was up to 65 mol%. Thermal and optical properties of the glasses were studied by differential scanning calorimetry (DSC) and Visible-IR transmission, which showed that most of GeS2-Ga2S3-AgCl glasses had strong glass-forming ability and broad region of transmission (about 0.45-12.5 mu m). With the addition of AgCl, the glass transition temperature, Tg decreases distinctly, and the short-wavelength cut-off edge (lambda(vis)) of the glasses also shifts to the long wavelength gradually. However, the glass-forming ability of the glass has a complicated evolutional trend depended on the compositional change. In addition, the values of the Vickers microhardness, H (v) , which decrease with the addition of AgCl, are high enough for the practical applications. These excellent properties of GeS2-Ga2S3-AgCl glasses make them potentially applied in the optoelectronic field, such as all-optical switch, etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Near-infrared luminescence is observed from bismuth-doped GeS2-Ga2S3 chalcogenide glasses excited by an 808 nm laser diode. The emission peak with a maximum at about 1260 nm is observed in 80GeS(2)-20Ga(2)S(3):0.5Bi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200 nm. The broadband infrared luminescence of Bi-doped GeS2-Ga2S3 chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to clarify the structure of glasses. These Bi-doped GeS2-Ga2S3 chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Yb:Gd2SiO5 (Yb:GSO) exhibits a large fundamental manifold splitting. Its long-wavelength emission band around 1088 nm, which has the largest emission cross section, encounters the lowest reabsorption losses caused by thermal population of the terminal laser level. As a result, low-threshold and tunable continuous-wave Yb:GSO lasers were demonstrated. A slope efficiency up to 86% and a pumping threshold as low as 127 mW were achieved for a continuous-wave Yb:GSO laser at 1092.5 nm under the pump of a high-brightness laser diode. A continuous tunability between 1000 and 1120 nm was realized with an SF14 prism as the intracavity tuning element. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TiO2 coatings were prepared on fused silica with conventional electron beam evaporation deposition. After TiO2 thin films were annealed at different temperatures for 4 h, several properties were investigated by X-ray diffraction (XRD), spectrometer.. photoelectron spectroscopy (XPS) and AFM. It was found that with the annealing temperature increasing, the transmittance of TiO2 coatings decreased, and the cutoff wavelength shifted to long wavelength in near ultraviolet band. Especially, when coatings were annealed at high temperature, the optical loss is very serious, which can be attributed to the scattering and the absorption of TiO2 coatings. XRD patterns revealed that only anatase phase was observed in TiO2 coatings regardless of the different annealing temperatures. XPS results indicated that the fine chemical shift of TiO2 2p(1/2) should be attributed to existence of oxygen vacancies around Ti+4 ion. The investigation on surface morphology by AFM showed that the RMS of titania thin films gradually increases from less than 0.40 nm to 5.03 nm and it should be ascribed to the growth of titanium dioxide grain size with the increase of annealing temperature. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

研究了沉积温度对热舟蒸发氟化镧薄膜结构和光学性能的影响,沉积温度从200℃上升到350℃,间隔为50℃.采用分光光度计测量了样品的透射率和反射率光谱曲线,并在此基础上进行了光学损耗、光学常数以及带隙和截止波长的计算.采用表面轮廓仪进行了表面形貌和表面粗糙度的标定,采用X射线衍射(XRD)方法测量了不同沉积温度下样品的微结构.发现在短波长波段,随着沉积温度的升高,光学损耗增加,晶粒尺寸增大,表面粗糙度略有增加.不过散射损耗在光学损耗中所占比例均很小,光学损耗的增加主要由吸收损耗引起.随着沉积温度的升高,折射率与消光系数增大,带隙变小,相对应的截止波长向长波方向移动.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for fabrication of long-wavelength narrow line-width InGaAs resonant cavity enhanced (RCE) photodetectors in a silicon substrate operating at the wavelength range of 1.3-1.6 mu m has been developed. A full width at half maximum (FWHM) of 0.7 nm and a peak responsivity of 0. 16 A/W at the resonance wavelength of 1.55 mu m have been accomplished by using a thick InP layer as part of the resonant cavity. The effects of roughness and tilt of the InP layer surface, and its free carrier absorption, as well as the thickness deviation of the mirror pair on the resonance wavelength shift and the peak quantum efficiency of the RCE photodetectors are analyzed in detail, and approaches for minimizing them toward superior performance are suggested. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the molecular beam epitaxy growth of metamorphic InxGa(1-x)As materials (x up to 0.5) on GaAs substrates systematically. Optimization of structure design and growth parameters is aimed at obtaining smooth surface and high optical quality. The optimized structures have an average surface roughness of 0.9-1.8 nm. It is also proven by PL measurements that the optical properties of high indium content (55%) InGaAs quantum wells are improved apparently by defect reduction technique and by introducing Sb as a surfactant. These provide us new ways for growing device quality metamorphic structures on GaAs substrates with long-wavelength emissions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long wavelength light emission was realized by capping InAs quantum dots (QDs) with short period GaAs/InAs superlattices (SLs) and an InGaAs strain-reducing layer (SRL). The optical properties were systematically investigated by photoluminescence tests. With increasing the periods of SLs, the emission wavelength of InAs QDs shifts from 1.27 to 1.53 mum. We explain the redshift as a result of the increased QD height with the SLs and the reduced strain in the dot caused by InGaAs SRL. (C) 2004 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a systematical study on the molecular beam epitaxy growth and optical property of (GaAs1-xSbx/In-y Ga1-yAs)/GaAs bilayer quantum well (BQW) structures. It is shown that the growth temperature of the wells and the sequence of layer growth have significant influence on the interface quality and the subsequent photoluminescence (PL) spectra. Under optimized growth conditions, three high-quality (GaAsSb0.29/In0.4GaAs)/GaAs BQWs are successfully fabricated and a room temperature PL at 1314 nm is observed. The transition mechanism in the BQW is also discussed by photoluminescence and photoreflectance measurements. The results confirm experimentally a type-II band alignment of the interface between the GaAsSb and InGaAs layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zn1-xMgxS-based Schottky barrier ultraviolet (UV) photodetectors were fabricated using the molecular-beam-epitaxy (MBE) technique. The influence of Mg content on MBE-grown Zn1-xMgxS-based UV photodetectors has been investigated in details with a variety of experimental techniques, including photoresponse (PR), capacitance-voltage, deep level transient Fourier spectroscopy (DLTFS) and photoluminescence (PL). The room-temperature PR results show that the abrupt long-wavelength cutoffs covering 325, 305 295. and 270 nm with Mg contents of 16%, 44%, 57%, and 75% in the Zn1-xMgxS active layers, respectively, were achieved. But the responsivity and the external quantum efficiency exhibited a slight decrease with the Mg content increasing. In good agreement with the PR results, both of the integrated intensity of the PL spectra obtained from Zn1-xMgxS thin films with different Mg compositions (x = 31% and 52%, respectively) and the DLTFS spectra obtained from Zn1-xMgxS-based (x = 5% and 45%, respectively) UV photodetector samples clearly revealed a significant concentration increase of the non-radiative deep traps with increasing Mg containing in the ZnMgS active layers. Our experimental results also indicate that the MBE-grown ZnMgS-based photodetectors can offer the promising characteristics for the detection of short-wavelength UV radiation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-quality GaNAs/GaAs quantum wells with high substitutional N concentrations, grown by molecular-beam epitaxy, are demonstrated using a reduced growth rate in a range of 0.125-1 mu m/h. No phase separation is observed and the GaNAs well thickness is limited by the critical thickness. Strong room-temperature photoluminescence with a record long wavelength of 1.44 mu m is obtained from an 18-nm-thick GaN0.06As0.94/GaAs quantum well. (C) 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical properties of highly strained GaInAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy with Sb assistance are investigated. The samples grown by Sb incorporation and Sb pre-deposition methods display high room-temperature photoluminescence (PL) intensity at extended long wavelength. This result is explained by the surfactant effects of Sb during the growth of GaInAs/GaAs QW systems. An abnormal S-shaped temperature dependence of the PL peak position is found in the In0.42Ga0.58As/GaAs triple QWs sample grown with Sb pre-deposition. By investigating the transmission electron microscope images and time-resolved PL spectra, it is found that the S-shaped temperature dependence of the PL peak position originates from the exciton localization effect brought by the Sb-rich clusters on the QW interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-wavelength high indium content InxGa1-xAs/GaAs single/multi quantum wells (QWs) structures have been successfully grown by molecular beam epitaxy. It is evidenced by X-ray measurements that the critical thickness of the well width of InxGa1-xAs/GaAs QWs with an indium content x of 47.5% can be raised up to 7nm without strain relation. 1.25μ m photoluminescence (PL) emission is obtained from the QWs with narrower full-width at half maximum (FWHM) less than 30meV. Our results are important basements which are useful for further fabricating GaAs-based long-wavelength devices. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews our work on controlled growth of self-assembled semiconductor nanostructures, and their application in light-emission devices. High-power, long-life quantum dots (QD) lasers emitting at similar to 1 mu m, red-emitting QD lasers, and long-wavelength QD lasers on GaAs substrates have successfully been achieved by optimizing the growth conditions of QDs.