58 resultados para liver protection
Expression of CD176 (Thomsen-Friedenreich antigen) on lung, breast and liver cancer-initiating cells
Resumo:
Human hepatoma (SMMC-7721) and normal liver (L02) cells were irradiated with c-rays, 12C6+ and 36Ar18+ ion beams at the Heavy Ion Research Facility in Lanzhou (HIRFL). By using the Calyculin-A induced premature chromosome condensation technique, chromatid-type breaks and isochromatid-type breaks were scored separately. Tumor cells irradiated with heavy ions produced a majority of isochromatid break, while chromatid breaks were dominant when cells were exposed to c-rays. The relative biological effectiveness (RBE) for irradiation-induced chromatid breaks were 3.6 for L02 and 3.5 for SMMC-7721 cell lines at the LET peak of 96 keVlm 1 12C6+ ions, and 2.9 for both of the two cell lines of 512 keVlm 1 36Ar18+ ions. It suggested that the RBE of isochromatid-type breaks was pretty high when high-LET radiations were induced. Thus we concluded that the high production of isochromatid-type breaks, induced by the densely ionizing track structure, could be regarded as a signature of high-LET radiation exposure.
Resumo:
The aim of this study was to evaluate the protective effects of different doses and administration modes of N-acetylcysteine (NAC) against X-ray-induced liver damage in mice. Kun-Ming mice were divided into four groups, each composed of six animals: two control groups and two NAC-treated groups. An acute study was carried out to determine alterations in lipid peroxidation (determined by measuring malondiadehyde (MDA) level), glutathione (GSH) content and superoxide dismutase (SOD) activity (assayed by colorimetric method), and DNA damage (characterized by DNA-single strand break using with comet assay) as well as cell apoptosis (measured by flow cytometry) at 12 h after irradiation. The results showed that there were dose-related decreases in MDA level, DNA damage and cell apoptosis, and dose-dependent increases in GSH content and SOD activity in all NAC-treated groups compared to control groups, indicating that pre-treatment or post-treatment with NAC significantly attenuates the acute liver damage caused by X-ray. In addition, significant positive correlations were observed between MDA level and DNA damage or cell apoptosis, implying that lipid peroxidation plays a major role in X-ray-induced liver injury. The data suggest that NAC exerts its radioprotective effect by counteracting accumulated reactive oxygen species in the liver through its properties as a direct antioxidant and a GSH precursor, when administered before or after X-ray irradiation.
Resumo:
Human hepatoma and normal liver cells were irradiated with C-12(6+), ion beams (LET= 96.05 keV/mu m) and gamma-rays at Heavy Ion Research Facility in Lanzhou (HIRFL). The chromatid breaks and break types were detected using the premature chromosome condensation technique. Our experimental results showed that chromatid breaks seem to have a good relation with C-12(6+) absorbed dose and C-12(6+) are more effective to induce chromatid breaks as compared to they-rays. For C-12(6+) ion irradiation the major break was isochromatid break, while chromatid breaks were dominant for gamma-ray irradiation. We also observed that the Relative Biology Effectiveness (RBE) of C-12(6+) ion is about 2.5 times higher than that of gamma-rays.
Resumo:
比较了N-乙酰半胱氨酸(NAC)及乙酰左旋肉毒碱(ALCAR)对12C6+离子照射小鼠的损伤效应,并探讨了其可能的作用机制。利用4Gy剂量的12C6+离子束对预先给予NAC(100mg/kg)和ALCAR(100mg/kg)保护的昆明小鼠进行单次全身照射。随后检测肝组织中总抗氧化能力(TAC)、DNA单链断裂和细胞凋亡率。结果显示,与照射对照组相比,提前给予NAC和ALCAR均极显著地增强了肝组织的抗氧化能力(P<0.001),减轻了12C6+离子导致的肝组织中DNA断裂(P<0.001)和细胞凋亡(P<0.001)。此外,还发现ALCAR组抗重离子辐照损伤的能力显著地高于NAC组(P<0.05)。实验结果提示了NAC和ALCAR可通过抵御组织内的氧化胁迫,阻止DNA链的断裂和细胞的凋亡,实现对C离子辐照损伤的保护效应。而且ALCAR比NAC可能更适合成为有潜力、有希望的抗C重离子辐射药物。
Resumo:
A 7 Tesla superconducting magnet with a clear warm bore of 156 mm in diameter has been developed for Lanzhou Penning Trap at the Institute of Modern Physics for high precision mass measurement. The magnet is comprised of 9 solenoid coils and operates in persistent mode with a total energy of 2.3 MJ. Due to the considerable amount of energy stored during persistent mode operation, the quench protection system is very important when designing and operating the magnet. A passive protection system based on a subdivided scheme is adopted to protect the superconducting magnet from damage caused by quenching. Cold diodes and resistors are put across the subdivision to reduce both the voltage and temperature hot spots. Computational simulations have been carried in Opera-quench. The designed quench protection circuit and the finite element method model for quench simulations are described; the time changing of temperature, voltage and current decay during the quench process is also analysed.
Resumo:
Since protein phosphorylation is a dominant mechanism of information transfer in cells, there is a great need for methods capable of accurately elucidating sites of phosphorylation. In recent years mass spectrometry has become an increasingly viable alternative to more traditional methods of phosphorylation analysis. The present study used immobilized metal affinity chromatography (IMAC coupled with a linear ion trap mass spectrometer to analyze phosphorylated proteins in mouse liver. A total of 26 peptide sequences defining 26 sites of phosphorylation were determined. Although this number of identified phosphoproteins is not large, the approach is still of interest because a series of conservative criteria were adopted in data analysis. We note that, although the binding of non-phosphorylated peptides to the IMAC column was apparent, the improvements in high-speed scanning and quality of MS/MS spectra provided by the linear ion trap contributed to the phosphoprotein identification. Further analysis demonstrated that MS/MS/MS analysis was necessary to exclude the false-positive matches resulting from the MS/MS experiments, especially for multiphosphorylated peptides. The use of the linear ion trap considerably enabled exploitation of nanoflow-HPLC/MS/MS, and in addition MS/MS/MS has great potential in phosphoproteome research of relatively complex samples. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitution degree of GA were analyzed by H-1 NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 +/- 11 nm.
Resumo:
The biochemical effects of gadolinium chloride were studied using high-resolution H-1 nuclear magnetic resonance (NMR) spectroscopy to investigate the biochemical composition of tissue (liver and kidney) aqueous extracts obtained from control and gadolinium chloride (GdCl3) (10 and 50 mg/kg body weight, intraperitoneal injection. i.p.) treated rats. Tissue samples were collected at 48, 96 and 168 h p.d. after exposure to GdCl3, and extracted using methanol/chloroform solvent system. H-1 NMR spectra of tissue extracts were analyzed by pattern recognition using principal components analysis. The liver damages caused by GdCl3 were characterized by increased succinate and decreased glycogen level and elevated lactate, alanine and betaine concentration in liver. Furthermore, the increase of creatine and lactate, and decrease of glutamate, alanine, phosphocholine, glycophosphocholine (GPC), betaine, myo-inositol and trimethylamine N-oxide (TMAO) levels in kidney illustrated kidney disturbance induced by GdCl3.