54 resultados para linear feedback control
Resumo:
针对机器人从自由空间运动控制过渡到约束空间力控制的过程中,存在冲撞、振荡甚至不稳定等问题,提出了利用加速度反馈为力控制提供阻尼,克服单纯依靠速度反馈的局限,进而稳定力控制系统的方法.这种方法不增加系统的复杂性,易于实现.本文对控制系统结构及控制策略作了分析.在一个直接驱动关节上的实验结果证明了本文分析的正确性,与只采用速度反馈的接触力控制相比,显示了这种方法的有效性。
Resumo:
研究了移动机器人反馈控制问题.这里所考虑的机器人是一个两轮驱动的具有非完整性的移动机器人小车.考虑了笛卡儿空间中轨线跟踪问题的扩展.且表明只要参考小车保持运动,在虚设的参考小车位形周围的小车位形的稳定成为可能.提出了最优控制律并给出了仿真结果。
Resumo:
本文为动力学控制工业机器人机械手提出一种综合控制算法。该控制算法,利用小脑模型算术计算机模块模拟机器人机械手的动力学方程并计算实现期望运动所需力矩作为前馈力矩控制项;利用自适应控制器实现反馈控制,以消除由输入扰动和参数变化而引起的机器人机械手运动误差。这种控制方法在时间上是有效的,且很适合于定点实现。控制方法的有效性通过四自由度的直接驱动机器人前两个关节的计算机仿真实验得到验证。
Resumo:
Among the cognitive studies of action, an important behavioral method is used to observe Reaction Time (RT) and Movement Time (MT) as the functions of motor parameters. RT is measured from the beginning of target presentation to the initiation of a movement, which is regarded as the programming of the ongoing movement. MT is measured from the initiation to the end of the movement, which is regarded as the execution of the movement. However, the relationship between RT and motor parameters remains uncertain till now. Under the uncertainty many related issues cannot be settled for long period, especially the issues as whether the amplitude effect appears during RT, or what should the amplitude effect be during RT. The present study aimed to find out the amplitude effect and the related cognitive process under different experimental conditions. First, we discussed the potential composition of RT and suggested that RT that normally measured in previous experiments might not reflect motor programming very well. Then we designed a series experiments to observe the relationship between RT and motor programming by using different Index of Difficulty (ID), different instructions in which speed and accuracy were emphasized respectively, different vision condition during movement execution and Go/NoGo paradigm. Meanwhile, we compared the amplitude effect under the respective RT to make the specific conclusion about the amplitude effect, and the relationship between RT and MT as well. The main findings are showed as following. 1) Because of the existing of “preview”, “visual feedback control” and “speed-accuracy tradeoff”, RT reflects motor programming differently under different experimental conditions. 2) Under different experimental conditions, the amplitude effect on RT varies. RT could be too short to exhibit the amplitude effect. Or the amplitude effect could be that more RT is needed for shorter movement when RT is prolonged. Or the amplitude effect could be that more RT is needed for longer movement when RT is further prolonged. 3) Under the present experimental conditions, the amplitude effect on MT showed consistently that longer movement needs longer MT. 4) Under the present experimental conditions, the relationship between RT and MT is a kind of compensation. The present study has important theoretic significance. The cognitive process of action is an important part of human cognitive behavior. The related studies could be very helpful for human people to know about themselves and the relation between themselves and the surroundings as well. Keywords motor programming; amplitude effect; Reaction Time (RT); Movement Time (MT)
Resumo:
A procedure for designing the optimal bounded control of strongly non-linear oscillators under combined harmonic and white-noise excitations for minimizing their first-passage failure is proposed. First, a stochastic averaging method for strongly non-linear oscillators under combined harmonic and white-noise excitations using generalized harmonic functions is introduced. Then, the dynamical programming equations and their boundary and final time conditions for the control problems of maximizing reliability and of maximizing mean first-passage time are formulated from the averaged Ito equations by using the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraint. Finally, the conditional reliability function, the conditional probability density and mean of the first-passage time of the optimally controlled system are obtained from solving the backward Kolmogorov equation and Pontryagin equation. An example is given to illustrate the proposed procedure and the results obtained are verified by using those from digital simulation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The quantum coherence control of a solid-state charge qubit is studied by using a suboptimal continuous feedback algorithm within the Bayesian feedback scheme. For the coherent Rabi oscillation, the present algorithm suggests a simple bang-bang control protocol, in which the control parameter is modulated between two values. For the coherence protection of the idle state, the present approach is applicable to arbitrary states, including those lying on the equator of the Bloch sphere which are out of control in the previous Markovian feedback scheme.
Resumo:
In this paper, the design and analysis of a new low noise charge sensitive preamplifier for silicon strip, Si(Li), CdZnTe and CsI detectors etc. with switch control feedback resistance were described, the entire system to be built using the CMOS transistors. The circuit configuration of the CSP proposed in this paper can be adopted to develop CMOS-based Application Specific Integrated Circuit further for Front End Electronics of read-out system of nuclear physics, particle physics and astrophysics research, etc. This work is an implemented design that we succeed after a simulation to obtain a rise time less than 3ns, the output resistance less than 94 Omega and the linearity almost good.
Resumo:
In this paper, several simplification methods are presented for shape control of repetitive structures such as symmetrical, rotational periodic, linear periodic, chain and axisymmetrical structures. Some special features in the differential equations governing these repetitive structures are examined by considering the whole structures. Based on the special properties of the governing equations, several methods are presented for simplifying their solution process. Finally, the static shape control of a cantilever symmetrical plate with piezoelectric actuator patches is demonstrated using the present simplification method. The result shows that present methods can effectively be used to find the optimal control voltage for shape control.
Resumo:
In petawatt laser system, the gratings used to compose pulse compressor are very large in size which can be only acquired currently by arraying small aperture gratings to form a large one instead, an approach referred to as grating tiling. Theory and experiments have demonstrated that the coherent addition of multiple small gratings to form a larger grating is viable, the key technology of which is to control the relative position and orientation of each grating with high precision. According to the main factors that affect the performance of the grating tiling, a 5-DOF ultraprecision stage is developed for the grating tiling experiment. The mechanism is formed by serial structures. The motion of the mechanism is guided by flexure hinges and driven by piezoelectric actuators and the movement resolution of which can achieve nanometer level. To keep the stability of the mechanism, capacitive position sensors with nanometer accuracy are fixed on it to provide feedback signals with which to realize closed-loop control, thus the positioning precision of the mechanism is within several nanometers range through voltage control and digital PID algorithm. Results of experiments indicate that the performance of the mechanism can meet the requirement of precision for grating tiling.}
Resumo:
DNA in macro- and micronuclei of Tetrahymena pyriformis treated with linear alkyl benzene sulfonate (LAS) and sodium pentachlorophenate (PCP-Na) were determined by microspectrophotometry. The effects on rate of formation of macronuclear DNA extrusion bodies were also studied. We found DNA content of micronuclei in 0.14 ppm LAS and 0.9 ppb PCP-Na was lower than in that of the control, and LAS was able to increase the formation rate of macronuclear DNA extrusion bodies (the formation rate was 54% in 11.3 ppm LAS and 25.6% in 16.7 ppm dichromate). We concluded that 0.14 ppm LAS (below the maximum acceptable toxicant concentration) was genotoxic, whereas 0.014 ppm LAS was not. Dichromate 0.05 ppm and 0.9 ppb PCP-Na, equal to and below the maximum acceptable toxicant concentration, respectively, were potentially genetoxic.
Resumo:
This paper reports that the complex-coupled distributed feedback laser with the sampled grating has been designed and fabricated. The +1st order reflection of the sampled grating is utilized for laser single mode operation, which is 1.5387 mu m in the experiment. The typical threshold current of the device is 30 mA, and the optical output power is about 10 mW at the injection current of 100 mA.
Resumo:
The lasing wavelength of a complex-coupled DFB laser is controlled by a sampled grating. The key concepts of the approach are to utilize the -1st order (negative first order) reflection of a sampled grating for laser single mode operation, and use conventional holographic exposure combined with the usual photolithography to fabricate the sampled grating. The typical threshold current of the sampled grating based DFB laser is 32 mA, and the optical output is about 10 mW at an injected current of 100 mA. The lasing wavelength of the device is 1.5356 mu m, which is the -1st order wavelength of the sampled grating.
Resumo:
This paper represents a LC VCO with AAC (Auto Amplitude Control), in which PMOS FETs are used as active components, and the varactors are directly connected to ground to widen Kvco linear range. The AAC circuitry adds little noise to the VCO and provides it with robust performance over a wide temperature and carrier frequency range. The VCO is fabricated in 50-GHz 0.35-mu m SiGe BiCMOS process. The measurement results show that it has -127.27-dBc/Hz phase noise at 1-MHz offset and a linear gain of 32.4-MHz/V between 990-MHz and 1.14-GHz. The whole circuit draws 6.6-mA current from 5.0-V supply.
Resumo:
A design of single-mode distributed feedback quantum cascade lasers (DFB-QCLs) with surface metal grating is described. A rigorous modal expansion theory is adopted to analyse the interaction between the waveguide mode and the surface plasmon wave for different grating parameters. A stable single-mode operation can be obtained in a wide range of grating depths and duty cycles. The single-mode operation of surface metal grating DFB-QCLs at room temperature for lambda = 8.5 mu m is demonstrated. The device shows a side-mode suppression ratio of above 20 dB. A linear tuning of wavelength with temperature indicates the stable single-mode operation without mode hopping.
Resumo:
We investigate the photoinduced anisotropy of a photochromic material of pyrrylfulgide/PMMA films. It is proven that when the film is illuminated with a linear polarization light, an optical axis that has the same polarization as the excitation light could be induced in the film. A matrix of light spots with different polarizations is recorded on the pyrrylfulgide/PMMA film. When reading out with non-polarization light, the matrix of light spots shows no information of patterns. However, when reading out with different linear polarization lights, different patterns could be observed. The experiment confirms that the pyrrylfulgide/PMMA film could be used to record two different polarization patterns in a matrix of spots. This property may be applied in camouflage technology.