55 resultados para lack of catalytic mechanism


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three types of metal-containing molecular sieves with AFI, AEL and CHA structures (Me = Co, Mn, Cr and V) were synthesized hydrothermally and characterized by XRD, XRF, TG, TPR, NH3-TPD and FT-IR. It was revealed that metals were incorporated into the framework of molecular sieves and induced the presence of charge centers. Both cobalt and manganese in the framework of AIPO-5, AlPO-11 and SAPO-34 were not reducible before the structure collapse. The redox behaviours of these catalysts in cyclohexane oxidation at 403 K using O-2 as oxidant were examined. CoAPO-11 exhibited best activity and good selectivities for the monofunctional oxidation products (88.5%). Cyclohexanol was the major product over most catalysts, whereas for Cr-containing molecular sieves, high selectivity of cyclohexanone was observed. Investigation of reaction mechanism based on CoAPO-11 and CrAPO-5 catalysts indicated that the decomposition of cyclohexyl hydroperoxide (CHHP), the intermediate in cyclohexane oxidation, followed the pathway: cyclohexanone <-- CHHP --> cyclohexanol -->cyclohexanone. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic mechanism for the oxidation of primary alcohols catalyzed by the two functional models of galactose oxidase (GOase), M-II L (M = Cu, Zn; L = N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)1-2-diiminoquinone)), has been studied by use of the density functional method B3LYP The catalytic cycle of Cu- and Zn-catalysts consists of two parts, namely, substrate oxidation (primary alcohol oxidation) and O-2 reduction (catalyst regeneration). The catalytic mechanisms have been studied for the two reaction pathways (route 1 and route 2). The calculations indicate that the hydrogen atom transfer within the substrate oxidation part is the rate-determining step for both catalysts, in agreement with the experimental observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water insoluble poly(epsilon-caprolactone) (PCL) was micronized into narrowly distributed stable nanoparticles. The biodegradation of such PCL nanoparticles in the presence of the enzyme, Lipase PS, was monitored by using laser light scattering because the scattering intensity is directly related to the particle concentration. The PCL and enzyme concentration dependence of the biodegradation rate supports a heterogeneous catalytic kinetics in which we have introduced an additional equilibrium between the inactive and active enzyme/substrate complexes. The initial rate equation derived on the basis of this mechanism was used to successfully explain the influence of surfactant, pH and temperature on the enzymatic biodegradation. Our results confirmed that both the adsorption and the enzymatic catalysis were important for the biodegradation of the PCL nanoparticles. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conversion of thyroxine (T-4) to 3,5,3'-triiodothyronine is an essential first step in controlling thyroid hormone action. Type I deiodinase (DI) can catalyze the conversion to produce the bulk of serum 3,5,3'-triiodothyronine. Acting as a mimic of DI, a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against T4 into selenocysteines, can catalyze the deiodination of T4 with dithiothreitol (DTT) as cosubstrate. The mimic enzyme Se-4C5 exhibited a much greater deiodinase activity than model compound ebselen and another selenium-containing antibody Se-Hp4 against GSH. The coupling of selenocysteine with the combining pocket of antibody 4C5 endowed Se-4C5 with enzymatic activity. To probe the catalytic mechanism of the catalytic antibody, detailed kinetic studies were carried out in this paper. Investigations into the deiodinative reaction revealed the relationship between the initial velocity and substrate concentration. The characteristic parallel Dalziel plots demonstrated that Se-4C5-catalyzed reaction mechanism was ping-pong one, involving at least one covalent enzyme intermediate. The kinetic properties of the catalytic antibody were similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 muM, respectively, and a V-m value of 270 pmol per mg of protein per min. The activity could be sensitively inhibited by 6-propyl-2-thiouracil (PTU) with a K-i value of similar to 120 muM at 2.0 muM T-4 concentration. The PTU inhibition was progressively alleviated with the increasing concentration of added DTT, revealing that PTU was a competitive inhibitor for DTT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two mixed oxide systems La2-xSrxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 1.0) and La2+xThxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 0.4) with K2NiF4 structure were prepared by varying re values; Their crystal structures were studied by means of XRD and IR spectra. The average valence of Cu ion at B site, nonstoichiometric oxygen (A) and the chemical composition in the bulk and on the surface of the catalysts were measured by means of chemical analysis and XPS. The catalytic behavior in reaction CO + NO was investigated under the regular change of average valence of Cu ion at B site and nonstoichiometric oxygen (lambda). Meanwhile, the adsorption and activation of the small molecules NO and the mixture of NO + CO over the mixed oxide catalysts were studied by means of MS-TPD. The catalytic mechanism of reaction NO + CO over these oxide catalysts were proposed; and it has been found that, at lower temperatures the activation of NO is the rate determining step and the catalytic activity is related to the lower valent metallic ion and its concentration, while at higher temperatures the adsorption of NO is the rate determining step and the catalytic activity is related to the oxygen vacancy and its concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore, it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conventional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work, the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was investigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow, the typical plastic deformation feature of BMGs, could not be found in as-cast and partially crystallized samples during nanoindentation. In addition, the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Giaridia lamblia was long considered to be one of the most primitive eukaryotes and to lie close to the transition between prokaryotes and eukaryotes, but several supporting features, such as lack of mitochondrion and Golgi, have been challenged recently. It was also reported previously that G. lamblia lacked nucleolus, which is the site of pre-rRNA processing and ribosomal assembling in the other eukaryotic cells. Here, we report the identification of the yeast homolog gene, krr1, in the anucleolate eukaryote, G. lamblia. The krr1 gene, encoding one of the pre-rRNA processing proteins in yeast, is actively transcribed in G. lamblia. The deduced protein sequence of G. lamblia krr1 is highly similar to yeast KRR1p that contains a single-KH domain. Our database searches indicated that krr1 genes actually present in diverse eukaryotes and also seem to present in Archaea. However, only the eukaryotic homologs, including that of G. lamblia, have the single-KH domain, which contains the conserved motif KR(K)R. Fibrillarin, another important pre-rRNA processing protein has also been identified previously in G. lamblia. Moreover, our database search shows that nearly half of the other nucleolus-localized protein genes of eukaryotic cells also have their homologs in Giardia. Therefore, we suggest that a common mechanism of pre-RNA processing may operate in the anucleolate eukaryote G. lamblia and in the other eukaryotes and that like the case of "lack of mitochondrion," "lack of nucleolus" may not be a primitive feature, but a secondarily evolutionary condition of the parasite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver impregnated H-ZSM-5 zeolite catalysts with silver loading from 3 to 15 wt.% were investigated for the selective catalytic reduction (SCR) of NOx with CH4 in the excess of oxygen. X-ray diffraction (XRD) and UV-Vis measurements established the structure of silver catalysts. A relationship between the structure of silver catalysts and their catalytic functions for the SCR of NOx by CH4 was clarified. The NO conversion to N-2 showed a S-shape dependence on the increase of Ag loading. No linear dependence of catalytic activity on the amount of silver ions in the zeolite cation sites was observed. Contrastively, the activity was significantly enhanced by the nano-sized silver particles formed on the higher Ag loading samples (greater than or equal to7 wt.%). Temperature programmed desorption (TPD) and temperature programmed reduction (TPR) studies showed that nano-silver particles provided much stronger adsorption centers for active intermediates NO3-(s) on which adsorbed NO3-(s) could be effectively reduced by the activated methane. Silver ions in the zeolite cation sites might catalyze the reaction through activation of CH4 at lower temperatures. Activated CH4 reacted with NO3-(s) adsorbed on nano-silver particles to produce N-2 and CO2. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A zirconium-based Ziegler-Natta catalytic system has been tested in the dimerization of 1-butene. It was found that the concentration of Et2AlCl, Ph3P and PhONa as well as the reaction temperature had great influences on the activity and selectivity of the catalyst. Under the optimum reaction conditions, the conversion of 1-butene is 91.9%, and the selectivity of dimers is 76.7%. Basic ligands such as Ph3P and PhONa can inhibit isomerization of 1-butene to 2-butene effectively. In addition, the metal hydride mechanism was also suggested and some indirect evidence was obtained in favor of this mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel liquid acid catalyst, composed of heteropolyacid and acetic acid for the alkylation of isobutane with butenes is reported. The conditions for the formation of catalytic active phase as well as its catalytic behaviors in alkylation of isobutane with butenes have been studied. It was found that acetic acid, as a solvent, exerts a synergistic effect on the acid strength of heteropolyacid, and the contents of crystal water in HPAs have influence over the formation of active phase and the catalytic activity. This novel catalyst is comparable to the sulfuric acid in catalytic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirteen title complexes ROCOCH2CH2SnCl3 . L(R = C(1 similar to 5)alkyl;L = DBSO,HMPA) were synthesized and characterized by elemental analysis, IR,H-1 NMR. The crystal structure of n -PrOCOCH2CH2SnCl3 . DBSO was determined by the X-ray diffraction analysis. The crystal belongs to orthorhombic system,space group P2(1)2(1)2(1) with a = 1.062, b = 1.427, c = 1.635nm; Z = 4. The complex exists as a discrete molecule, and the tin atom attains a distorted octahedral geometry via the coordination of intramolecular carbonyl oxygen and the Lewis base donor atom. The transesterification of CH3OCOCH2CH2SnCl3 . L with alcohol was studied, and the intramolecular Lewis acid catalytic mechanism was suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on scanning tunnelling microscopy and electrochemical measurements, orientation and electrocatalytic function of riboflavin adsorbed on carbon substrates have been described for the first time. Scanning tunnelling micrographs show clearly that tip induction may result in an orientation change of the adsorbed riboflavin molecule on highly oriented pyrolytic graphite from the initially vertical orientation to the stable flat form. The adsorbed riboflavin as an effective mediator can accelerate the reduction of dioxygen which accepts two electrons from the reduced riboflavin to generate hydrogen peroxide. The rate constants of the electrocatalytic reaction in various pH solutions were determined using a rotating disc electrode modified with riboflavin. The pH effect and possible catalytic mechanism are discussed in detail.