233 resultados para interface gestuelle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface of a laser-discrete-quenched steel substrate and as-deposited chromium electroplate was investigated by ion beam etching, dissolving-substrate-away and using a Vickers microhardness tester, in an attempt to reveal the mechanism that the service life of the chromium-coated parts is increased by the duplex technique of laser pre-quenching plus chromium post-depositing. The laser quenching of the steel substrate can reduce the steep hardness gradient at the substrate/chromium interface and improve the load-bearing capacity of chromium electroplate. Moreover, the laser quenching prior to plating has an extremely great effect on the morphologies and microstructure of the substrate/chromium interface: there is a transient interlayer at the original substrate/chromium interface while there is not at the laser-quenchedzone/chromium interface; the near-substrate surface microstructure and morphologies of the free-standing chromium electrodeposits, whose substrate was dissolved away with nital 30% in volume, inherit the periodically gradient characteristics of the laser-discrete-quenched substrate surface. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peel test measurements have been performed to estimate both the interface toughness and the separation strength between copper thin film and Al2O3 substrate with film thicknesses ranging between 1 and 15 mu m. An inverse analysis based on the artificial neural network method is adopted to determine the interface parameters. The interface parameters are characterized by the cohesive zone (CZ) model. The results of finite element simulations based on the strain gradient plasticity theory are used to train the artificial neural network. Using both the trained neural network and the experimental measurements for one test result, both the interface toughness and the separation strength are determined. Finally, the finite element predictions adopting the determined interface parameters are performed for the other film thickness cases, and are in agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we have elucidated the importance of energy and water cycling in arid areas to investigate global climate and local economics. Then, we were concerned with the physical arguments as how to stratify the soil, and the stability of the numerical scheme in the mathematical model for predicting temperature variation and water motion. Furthermore, we discuss the methods to estimate evaporation in arid areas. Numerical simulation of energy and water cycling at the Acsu Observatory, CAS, Xinjiang province and Shapuotou Observatory, CAS, Ningxia Province are conducted as case studies. The results show that the laws of terrestrial processes are rather typical in these arid areas. Planting drought-endurable trees can alleviate unfavourable conditions to a certain extent. (C) 1997 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new mechanics model based on Peierls concept is presented in this paper, which can clearly characterize the intrinsic features near a tip of an interfacial crack. The stress and displacement fields are calculated under general combined tensile and shear loadings. The near tip stress fields show some oscillatory behaviors but without any singularity and the crack faces open completely without any overlapping when remote tensile loading is comparable with remote shear loading. A fracture criterion for predicting interface toughness has been also proposed, which takes into account for the shielding effects of emitted dislocations. The theoretical toughness curve gives excellent prediction, as compared with the existing experiment data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The axisymmetric problem of an elastic fiber perfectly bonded to a nonhomogeneous elastic matrix which contains an annular crack going through the interface into the fiber under axially symmetric shear stress is considered. The nature of the stress singularity is studied. It is shown that at the irregular point on the interface, whether the shear modulus is continuous or discontinuous the stresses are bounded. The problem is formulated in terms of a singular integral equation and can be solved by a regular method. The stress intensity factors and crack surface displacement are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is presented for calculating the values of K-I and K-II in the elasticity solution at the tip of an interface crack. The method is based on an evaluation of the J-integral by the virtual crack extension method. Expressions for calculating K-I and K-II by using the displacements and the stiffness derivative of the finite element solution and asymptotic crack tip displacements are derived. The method is shown to produce very accurate solutions even with coarse element mesh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero thickness crack tip interface elements for a crack normal to the interface between two materials are presented. The elements are shown to have the desired r(lambda-1) (0 < lambda < 1) singularity in the stress field at the crack tip and are compatible with other singular elements. The stiffness matrices of the quadratic and cubic interface element are derived. Numerical examples are given to demonstrate the applicability of the proposed interface elements for a crack perpendicular to the bimaterial interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed analysis of kinking of an interface crack between two dissimilar anisotropic elastic solids is presented in this paper. The branched crack is considered as a distributed dislocation. A set of the singular integral equations for the distribution function of the dislocation density is developed. Explicit formulas of the stress intensity factors and the energy release rates for the branched crack are given for orthotropic bimaterials and misoriented orthotropic bicrystals. The role of the stress parallel to the interface, sigma0 is taken into account in these formulas. The interface crack can advance either by continued extension along the interface or by kinking out of the interface into one of the adjoining materials. This competition depends on the ratio of the energy release rates for interface cracking and for kinking out of the interface and the ratio of interface toughness to substrate toughness. Throughout the paper, the influences of the inplane stress sigma0 on the stress intensity factors and the energy release rates for the branched crack, which can significantly alter the conditions for interface cracking, are emphasized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the variable power singularity of the strain field at the crack tip can be obtained by the simple technique of collapsing quadrilateral isoparametric elements into triangular elements around the crack tip and adequately shifting the side-nodes adjacent to this crack tip. The collapsed isoparametric elements have the desired singularity at crack tip along any ray. The strain expressions for a single element have been derived and in addition to the desired power singularity, additional singularities are revealed. Numerical examples have shown that triangular elements formed by collapsing one side lead to excellent results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A potential energy model is developed for turbulent entrainment in the absence of mean shear in a linearly stratified fluid. The relation between the entrainment distance D and the time t and the relation between dimensionless entrainment rate E and the local Richardson number are obtained. An experiment is made for examination. The experimental results are in good agreement with the model, in which the dimensionless entrainment distance D is given by DBAR = A(i)(SBAR)-1/4(fBAR)1/2(tBAR)1/8, where A(i) is the proportional coefficient, S is the dimensionless stroke, fBAR is the dimensionless frequency of the grid oscillation, tBAR the dimensionless time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the particle cover over the density interface between two layers of fluids and of the suspended solid particles in the upper turbulcnt layer on the turbulent entrainment has been studied experimentally. The entrainment distance D is a function of the time of power: D=kt, where =0.200-0.130p. For suspended particles in the upper layer and pure 2-layer fluid is equal to 0.200, but the value of k for the suspended particles is smaller than that for the pure 2-layer fluid. The non-dimensional entrainment velocity is E=KRiln, where n=1.50+0.93 p. It is shown that the particle cover over the interface changes the power of Ril in the entrainment and hinders the turbulent entrainment. The variation rule of E for the suspended particles is the same as that for the pure 2-layer fluid, but the K value of the former is smaller than that of the latter. The turbulent mixing mechanism has been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crack intersecting an interface between two dissimilar materials may advance by either penetrating through the interface or deflecting into the interface. The competition between deflection and penetration can be assessed by comparison of two ratios: (i) the ratio of the energy release rates for interface cracking and crack penetration; and (ii) the ratio of interface to material fracture energies. Residual stresses caused by thermal expansion misfit can influence the energy release rates of both the deflected and penetrating crack. This paper analyses the role of residual stresses. The results reveal that expansion misfit can be profoundly important in systems with planar interfaces (such as layered materials, thin film structures, etc.), but generally can be expected to be of little significance in fiber composites. This paper corrects an earlier result for the ratio of the energy release rate for the doubly deflected crack to that for the penetrating crack in the absence of residual stress.