262 resultados para household size
Resumo:
Large parts of shallow seas are covered by regular seabed patterns and sand wave is one kind of these patterns. The instability of the sedimentary structures may hazard pipelines and the foundations of offshore structures. In the last decade or so, it's a focus for engineers to investigate the movement mechanism of sand waves. Previous theoretical studies of the subject have developed a general model to predict the growth and migration of sand waves, which is based on the two-dimensional vertical shallow water equations and the bed-form deformation equations. Although the relation between wave-current flow and sand bed deformation has been established, the topographic influence has not been considered in the model. In this paper some special patterns, which are asymmetric and close to the reality, are represent as the perturbed seabed and the evolution of sand waves is calculated. The combination of a steady flow induced by wind and a sinusoidal tidal flow is considered as the basic flow. Finally the relations of some parameters (grain size, etc.) and sand waves' growth and migration are discussed, and the growth rate and migration speeds of asymmetric sand waves are carried out.
Resumo:
Because of the load transfer effect of interface layer, the stress distribution inside the composite structure of film/substrate can be very different from the Timoshenko's model. In this paper, we give the derivation and analysis of such load transfer effect of shear-lag (S-L) model. The micro-structure size (boundary conditions) effect together with interface load transfer effect becomes more and more important as the microstructure size including the three dimensions of thickness, width and length shrinks. The microstructure size is also responsible for the so-called edge-induced stress. The edge effect and difference of S-L model and Timoshenko model are also demonstrated.
Resumo:
The conventional direct simulation Monte Carlo (DSMC) method has a strong restriction on the cell size because simulated particles are selected randomly within the cell for collisions. Cells with size larger than the molecular mean free path are generally not allowed in correct DSMC simulations. However, the cell-size induced numerical error can be controlled if the gradients of flow properties are properly involved during collisions. In this study, a large cell DSMC scheme is proposed to relax the cell size restriction. The scheme is applied to simulate several test problems and promising results are obtained even when the cell size is greater than 10 mean free paths of gas molecules. However, it is still necessary, of course, that the cell size be small with respect to the flow field structures that must be resolved.
Resumo:
The mechanical behaviors of the ceramic particle-reinforced metal matrix composites are modeled based on the conventional theory of mechanism-based strain gradient plasticity presented by Huang et al. Two cases of interface features with and without the effects of interface cracking will be analyzed, respectively. Through comparing the result based on the interface cracking model with experimental result, the effectiveness of the present model can be evaluated. Simultaneously, the length parameters included in the strain gradient plasticity theory can be obtained.
Resumo:
Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.
Resumo:
Size-dependent elastic properties of Ni nanofilms are investigated by molecular dynamics ( MD) simulations with embedded atom method (EAM). The surface effects are considered by calculating the surface relaxation, surface energy, and surface stress. The Young's modulus and yield stress are obtained as functions of thickness and crystallographic orientation. It is shown that the surface relaxation has important effects on the the elastic properties at nanoscale. When the surface relaxation is outward, the Young's modulus decreases with the film thickness decreasing, and vice versa. The results also show that the yield stresses of the films increase with the films becoming thinner. With the thickness of the nanofilms decreasing, the surface effects on the elastic properties become dominant.
Resumo:
A theoretical model is presented to investigate the size-dependent elastic moduli of nanostructures with the effects of the surface relaxation surface energy taken into consideration. At nanoscale, due to the large ratios of the surface-to-volume, the surface effects, which include surface relaxation surface energy, etc., can play important roles. Thus, the elastic moduli of nanostructures become surface- and size-dependent. In the research, the three-dimensional continuum model of the nanofilm with the surface effects is investigated. The analytical expressions of five nonzero elastic moduli of the nanofilm are derived, and then the dependence of the elastic moduli is discussed on the surface effects and the characteristic dimensions of nanofilms.
Resumo:
A simple derivation based on continuum mechanics is given, which shows the surface stress is critical for yield strength at ultra-small scales. Molecular dynamics (MD) simulations with modified embedded atom method (MEAM) are employed to investigate the mechanical behaviors of single-crystalline metal nanowires under tensile loading. The calculated yield strengths increasing with the decrease of the cross-sectional area of the nanowires are in accordance with the theoretical prediction. Reorientation induced by stacking faults is observed at the nanowire edge. In addition. the mechanism of yielding is discussed in details based on the snapshots of defects evolution. The nanowires in different crystallographic orientations behave differently in stretching deformation. This study on the plastic properties of metal nanowires will be helpful to further understanding of the mechanical properties of nanomaterials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The thermal expansion coefficient (TEC) of an ideal crystal is derived by using a method of Boltzmann statistics. The Morse potential energy function is adopted to show the dependence of the TEC on the temperature. By taking the effects of the surface relaxation and the surface energy into consideration, the dimensionless TEC of a nanofilm is derived. It is shown that with decreasing thickness, the TEC can increase or decrease, depending on the surface relaxation of the nanofilm.
Resumo:
The microstructural variation near surface of nano elastic materials is analyzed based on different potentials. The atomic/molecular mechanism underlying the variation and its effect on elastic modulus are such that the nature of long-range interactions (attractive or repulsive) in the atomic/molecular potentials essentially governs the variation near surface (looser or tighter) and results in two opposite size effects (decreasing or increasing modulus) with decreasing size.
Resumo:
The influence of contact angle and tube radius on the capillary-driven flow for circular cylindrical tubes is studied systematically by microgravity experiments using the drop tower. Experimental results show that the velocity of the capillary flow decreases monotonically with an increase in the contact angle. However, the time-evolution of the velocity of the capillary flow is different for different sized tubes. At the beginning of the microgravity period, the capillary flow in a thinner tube moves faster than that in a thicker tube, and then the latter overtakes the former. Therefore, there is an intersection between the curves of meniscus velocity vs microgravity time for two differently sized tubes. In addition, for two given sized tubes this intersection is delayed when the contact angle increases. The experimental results are analyzed theoretically and also supported by numerical computations.
Resumo:
Abstract: In order to investigate the effects of the grain size distribution and the micro-structure of soils on the mechani- cal characteristics, some static triaxial compression tests were carried out, and then the relationship of stress-strain and the strength behavior of silty sand were compared among undisturbed samples with different grain size distribution, undis- turbed and remolded samples with the same grain size distribution, and reconstituted samples (or called mixed samples) with different grain size distribution. The effects of grain size distribution and structure on the mechanic behavior of silty sands were mainly analyzed. It is shown that the obvious differences of the mechanical characteristics between undis- turbed soils and remolded soils are caused by the differences of soil structures. Although the grain size distribution are different between two soil samples, their mechanical characteristics may be close to each other, or may have obvious differences because of the effects of micro-structure.
Resumo:
The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which the cluster size distribution and the energy attenuation of the laser as it propagates through the cluster jet are taken into account. It has been found that there exists a proper laser spot size for the maximum fusion neutron yield for a given laser pulse and a specific deuterium gas cluster jet. The proper spot size, which is dependent on the laser parameters and the cluster jet parameters, has been calculated and compared with the available experimental data. A reasonable agreement between the calculated results and the published experimental results is found.
Resumo:
The impact of a laser-accelerated micron-size projectile on a dense plasma target is studied using two-dimensional particle-in-cell simulations. The projectile is first accelerated by an ultraintense laser. It then impinges on the dense plasma target and merges with the latter. Part of the kinetic energy of the laser-accelerated ions in the projectile is deposited in the fused target, and an extremely high concentration of plasma ions with a mean kinetic energy needed for fusion reaction is induced. The interaction is thus useful for laser-driven impact fusion and as a compact neutron source.