131 resultados para harmonic number
Resumo:
This paper presents a micromechanics analysis of the elastic solids weakened by a large number of microcracks in a plane problem. A new cell model is proposed. Each cell is an ellipse subregion and contains a microcrack. The effective moduli and the stress intensity factors for an ellipse cell are obtained. The analytic closed formulas of concentration factor tensor for an isotropic matrix containing an anisotropic inclusion are derived. Based on a self-consistent method, the effective elastic moduli of the solids weakened by randomly oriented microcracks are obtained.
Resumo:
To gain some insight into the behaviour of low-gravity flows in the material processing in space, an approximate theory has been developed for the convective motion of fluids with a small Grashof number Gr. The expansion of the variables into a series of Gr reduces the Boussinesq equation to a system of weakly coupled linearly inhomogeneous equations. Moreover, the analogy concept is proposed and utilized in the study of the plate bending problems in solid mechanics. Two examples are investigated in detail, i. e. the 2-dimensional steady flows in either circular or square infinite closed cylinder, which is horizontally imposed at a specified temperature of linear distribution on the boundaries. The results for stream function ψ, velocity u and temperature T are provided. The analysis of the influences of some parameters such as the Grashof number Gr and the Prandtl number Pr, on motions will lead to several interesting conclusions. The theory seems to be useful for seeking for an analytical solutions. At least, it will greatly simplify the complicated problems originally governed by the Navier-Stokes equation including buoyancy. It is our hope that the theory might be applicable to unsteady or 3-dimensional cases in future.
Resumo:
This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.
Resumo:
The statistical-mechanics theory of the passive scalar field convected by turbulence, developed in an earlier paper [Phys. Fluids 28, 1299 (1985)], is extended to the case of a small molecular Prandtl number. The set of governing integral equations is solved by the equation-error method. The resultant scalar-variance spectrum for the inertial range is F(k)~x−5/3/[1+1.21x1.67(1+0.353x2.32)], where x is the wavenumber scaled by Corrsin's dissipation wavenumber. This result reduces to the − (5)/(3) law in the inertial-convective range. It also approximately reduces to the − (17)/(3) law in the inertial-diffusive range, but the proportionality constant differs from Batchelor's by a factor of 3.6.
Resumo:
The high Reynolds number flow contains a wide range of length and time scales, and the flow
domain can be divided into several sub-domains with different characteristic scales. In some
sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some
sub-domains, the viscosity dissipation scales need to be considered in all directions; in some
sub-domains, the viscosity dissipation scales are unnecessary to be considered at all.
For laminar boundary layer region, the characteristic length scales in the streamwise and normal
directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in
the outer region of the boundary layer are L and U, respectively. In the neighborhood region of
the separated point, the length scale l<
Resumo:
Spherical nano-indentations of Cu46Zr54 bulk metallic glass (BMG) model systems were performed using molecular dynamics (MD) computer simulations, focusing specifically on the physical origin of serrated plastic flow. The results demonstrate that there is a direct correlation between macroscopic flow serration and underlying irreversible rearrangement of atoms, which is strongly dependent on the loading (strain) rate and the temperature. The serrated plastic flow is, therefore, determined by the magnitude of such irreversible rearrangement that is inhomogeneous temporally. A dimensionless Deborah number is introduced to characterize the effects of strain rate and temperature on serrations. Our simulations are shown to compare favorably with the available experimental observations.
Resumo:
A universal Biot number of ceramics, which not only determines the susceptibility of the ceramics to quenching but also indicates the duration that the ceramics fail during thermal shock, is theoretically obtained. The present analysis shows that the thermal shock failure of the ceramics with a Biot number greater than this universal value is a very rapid process that just occurs in the initial regime of the heat conduction of the ceramics. This universal Biot number provides a guide to the selection of the ceramics applying to the thermostructural engineering including thermal shock.
Resumo:
We experimentally investigate the high-order harmonic generation in argon gas using a driving laser pulse at a center wavelength of 1240 nm. High-contrast fine interference fringes could be observed in the harmonic spectra near the propagation axis, which is attributed to the interference between long and short quantum paths. We also systematically examine the variation of the interference fringe pattern with increasing energy of the driving pulse and with different phase-matching conditions.
Resumo:
We investigate experimentally the high-order harmonic generation from aligned CO2 molecules and demonstrate that the modulation inversion of the harmonic yield with respect to molecular alignment can be altered dramatically by fine-tuning the intensity of the driving laser pulse for harmonic generation. The results can be modeled by employing the strong field approximation including a ground state depletion factor. The laser intensity is thus proved to be a parameter that can control the high-harmonic emission from aligned molecules.
Resumo:
We experimentally investigate the evolution of an angularly resolved spectrum of third harmonic generated by infrared femtosecond laser pulse filamentation in air. We show that at low pump intensity, phase matching between the fundamental and third-harmonic waves dominates the nonlinear optical effect and induces a ring structure of the third-harmonic beam, whereas at high pump intensity, the dispersion properties of air begin to affect the angular spectrum, leading to the formation of a nonlinear X wave at third harmonic.
Resumo:
We investigate the emission spectra of the semiconductor quantum well for few-cycle and sub-cycle pulse exciting. We find that Fano interference may induce third harmonic enhancement. Third harmonic enhancement varies with the magnitude and duration of the incident pulse, and may be enhanced by approximately one order of magnitude for the low intensity region of the sub-cycle incident pulse exciting.
Resumo:
We theoretically demonstrate the selective enhancement of high-order harmonic generation (HHG) in two-color laser fields consisting of a single-cycle fundamental wave (800 nm wavelength) and a multicycle subharmonic wave (2400 nm wavelength). By performing time-frequency analyses based on a single-active-electron model, we reveal that such an enhancement is a result of the modified electron trajectories in the two-color field. Furthermore, we show that selectively enhanced HHG gives rise to a bandwidth-controllable extreme ultraviolet supercontinuum in the plateau region, facilitating the generation of intense single isolated attosecond pulses.
Resumo:
The authors report the measurement of the angularly resolved spectrum of the third harmonic generated in a femtosecond filament in air and its evolution with increasing pump power. Pumped by a focused infrared ultrashort pulse with a carrier wavelength of 1270 nm, a pulse duration of similar to 20 fs, and pulse energy up to 487 mu J, the generated third harmonic is composed of an on-axis emission and a conical ring emission. When the pump power is sufficiently high, angularly resolved spectra with significant X-like feature could be observed, indicating the formation of nonlinear X wave at third harmonic. (c) 2008 American Institute of Physics.
Resumo:
We experimentally investigate the generation of high-order harmonics in a 4-mm-long gas cell using midinfrared femtosecond pulses at various wavelengths of 1240 nm, 1500 nm, and 1800 nm. It is observed that the yield and cutoff energy of the generated high-order harmonics critically depend on focal position, gas pressure, and size of the input beam which can be controlled by an aperture placed in front of the focal lens. By optimizing the experimental parameters, we achieve a cutoff energy at similar to 190 eV with the 1500 nm driving pulses, which is the highest for the three wavelengths chosen in our experiment.