36 resultados para haplotype


Relevância:

10.00% 10.00%

Publicador:

Resumo:

高原鼢鼠是一类地下独居啮齿动物,为青藏高原特有种之一.为研究该物种的谱系地理学和遗传多样性,本文测定了采自青藏高原东部3个地理种群8个小种群共37个个体的线粒体D-loop区序列变异.在长度为627 bp的序列中,共发现50个变异位点,定义了26种单倍型.该物种的单倍型多样性(Haplotype diversity,H)较高和核苷酸多样性(Nucleotide diversity,πn)较低.谱系分析得到3个稳定的分支,分别与采集的地理种群相吻合:同一地理种群内单倍型之间遗传差异小,而不同地理来源的单倍型之间存在较大区别.距离隔离分析表明高原鼢鼠的遗传分化与地理距离呈正相关.AMOVA分析同样表明地理种群之间存在显著差异:地理种群间变异占遗传变异的80.45%.高原鼢鼠的这种遗传结构特点可能主要是由于第四纪气候变迁、该物种稳定的地下生活环境和有限的迁移能力造成的

Relevância:

10.00% 10.00%

Publicador:

Resumo:

由于青藏高原的地貌效应,第四纪冰期气候的反复变化应对现今该地区生物的地理分布及其居群遗传结构产生重大影响.本文对这一地区特有分布物种祁连圆柏Juniperus przewalskii Kom.整个分布区内20居群392个个体的trnT-trnF序列变化进行了研究;共发现3种单倍型(haplotype),构成两种地理区域:高原台面上的居群主要固定HapA,而HapA、HapB和HapC在高原边缘居群均有分布.所有居群总的遗传多样性HT=0.511,GST=0.847.在低海拔的高原边缘,Hap A、Hap B和Hap C高频率固定在不同的居群中,表明可能存在多个不同的避难所,居群反复缩小和扩张的瓶颈效应造成了遗传多样性的丢失.而边缘的一个居群含有两种相似单倍型频率则可能是冰期后迁移融合而成或者该居群在冰期经受的瓶颈作用更弱.高原台面东部间断分布的居群只固定Hap A,表明它们可能经历了冰期后共同的回迁过程和由此产生的奠基者效应.我们的研究结果表明祁连圆柏在冰期可能存在多个避难所,瓶颈效应和奠基者效应造成了这些居群现在的遗传多样性分布式样.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metagentiana striata is an alpine annual herbaceous plant endemic to the east of the Qinghai-Tibet (Q-T) Plateau and adjacent areas. The phylogeography of M. striata was studied by sequencing the chloroplast DNA (cpDNA) trnS-trnG intergenic spacer. Ten haplotypes were identified from an investigation of 232 individuals of M. striata from 14 populations covering the entire geographical range of this species. The level of differentiation amongst populations was very high (G(ST) = 0.746; N-ST = 0.774) and a significant phylogeographical structure was observed (P < 0.05). An analysis of molecular variance found a high variation amongst populations (76%), with F-ST = 0.762 (highly significant, P < 0.001), indicating that little gene flow occurred amongst the different regions; this was explained by the isolation of populations by high mountains along the Q-T Plateau and adjacent areas (N-m = 0.156). Only one ancestral haplotype (A) was common and widespread throughout the distributional range of M. striata. The populations of the Hengduan Mountains region of the south-eastern Q-T Plateau showed high diversity and uniqueness of haplotypes. It is suggested that this region was the potential refugium of M. striata during the Quaternary glaciation, and that interglacial and postglacial range expansion occurred from this refugium. This scenario was in good agreement with the results of nested clade analysis, which inferred that the current spatial distribution of cpDNA haplotypes and populations resulted from range expansion, together with past allopatric fragmentation events. (c) 2008 The Linnean Society of London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homoploid hybrid plant species are rare, and the mechanisms of their speciation are largely unknown, especially for homoploid hybrid tree species. Two contrasting hypotheses have been proposed to explain the origin of Hippophae goniocarpa: (1) it is a diploid hybrid originating from H. rhamnoides ssp. sinensis x H. neurocarpa ssp. neurocarpa, and (2) it originated via marginal differentiation from H. rhamnoides ssp. sinensis. Regardless of which of these hypotheses is true (if either), previous studies have suggested that H. rhamnoides ssp. sinensis is the only maternal donor for this hybrid species. In this study, we aim to elucidate the maternal composition of H. goniocarpa and to test the two hypotheses. For this purpose, we sequenced the maternal chloroplast DNA trnL-F region of 75 individuals representing H. goniocarpa, H. rhamnoides ssp. sinensis, and H. neurocarpa ssp. neurocarpa in two co-occurring sites of the taxa. Seven haplotypes were identified from three taxonomic units, and their phylogenetic relationships were further constructed by means of maximum parsimony, maximum likelihood, and network analyses. These seven haplotypes clustered into two distinct, highly divergent lineages. Two haplotypes from one lineage were found in H. rhamnoides ssp. sinensis, and five (representing the other lineage) in H. neurocarpa ssp. neurocarpa. Hippophae goniocarpa shared four common haplotypes from both lineages, but the haplotypes detected from the two populations differed to some extent, and in each case were identical to local haplotypes of the putative parental species. Thus, both H. rhamnoides ssp. sinensis and H. neurocarpa ssp. neurocarpa appear to have together contributed to the maternal establishment of H. goniocarpa. These results clearly demonstrate that the marginal origin hypothesis should be rejected, and support the hybrid origin hypothesis. Hippophae goniocarpa exhibits a sympatric distribution with its two parent species, without occupying new niches or displaying complete ecological isolation. However, this species has effectively developed reproductive isolation from its sympatric parent species. Our preliminary results suggest that H. goniocarpa may provide a useful model system for studying diploid hybrid speciation in trees. (c) 2008 The Linnean Society of London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N-ST = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N-ST > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N-ST = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vegetation of the northeast Qinghai-Tibetan Plateau is dominated by alpine meadow and desert-steppe with sparse forests scattered within it. To obtain a better understanding of the phylogeography of one constituent species of the forests in this region, we examined chloroplast trnT-trnF and trnS-trnG sequence variation within Juniperus przewalskii, a key endemic tree species. Sequence data were obtained from 392 trees in 20 populations covering the entire distribution range of the species. Six cpDNA haplotypes were identified. Significant population subdivision was detected (G(ST) = 0.772, N-ST = 0.834), suggesting low levels of recurrent gene flow among populations and significant phylogeographic structure (N-ST > G(ST), P < 0.05). Eight of the nine disjunct populations surveyed on the high-elevation northeast plateau were fixed for a single haplotype (A), while the remaining, more westerly population, contained the same haplotype at high frequency together with two low frequency haplotypes (C and F). In contrast, most populations that occurred at lower altitudes at the plateau edge were fixed or nearly fixed for one of two haplotypes, A or E. However, two plateau edge populations had haplotype compositions different from the rest. In one, four haplotypes (A, B, D and E) were present at approximately equivalent frequencies, which might reflect a larger refugium in the area of this population during the last glacial period. Phylogenetic analysis indicated that the most widely distributed haplotype A is not ancestral to other haplotypes. The contrasting phylogeographic structures of the haplotype-rich plateau edge area and the almost haplotype-uniform plateau platform region indicate that the plateau platform was recolonized by J. przewalskii during the most recent postglacial period. This is supported by the findings of a nested clade analysis, which inferred that postglacial range expansion from the plateau edge followed by recent fragmentation is largely responsible for the present-day spatial distribution of cpDNA haplotypes within the species.