37 resultados para grid points
Resumo:
We developed a direct partitioning method to construct a seamless discrete global grid system (DGGS) with any resolution based on a two-dimensional projected plane and the earth ellipsoid. This DGGS is composed of congruent square grids over the projected plane and irregular ellipsoidal quadrilaterals on the ellipsoidal surface. A new equal area projection named the parallels plane (PP) projection derived from the expansion of the central meridian and parallels has been employed to perform the transformation between the planar squares and the corresponding ellipsoidal grids. The horizontal sides of the grids are parts of the parallel circles and the vertical sides are complex ellipsoidal curves, which can be obtained by the inverse expression of the PP projection. The partition strategies, transformation equations, geometric characteristics and distortions for this DGGS have been discussed. Our analysis proves that the DGGS is area-preserving while length distortions only occur on the vertical sides off the central meridian. Angular and length distortions positively correlate to the increase in latitudes and the spanning of longitudes away from a chosen central meridian. This direct partition only generates a small number of broken grids that can be treated individually.
Resumo:
A new electrochemiluminescence (ECL) microoptoprobe with simple structure. small sampling volume and high efficiency was developed. It was constructed by fixing the transparent gold mini-grid on the end surface of the optical fiber, and by surrounding the fiber with the counter- and reference electrodes to form a self-contained three-electrode system. The use of mini-grid electrode increased the surface area and collection efficiency. which resulted in higher ECL signal and better sensitivity. The counter electrode together with one end of the fiber formed a mini-vessel, which eliminated the need of additional container and allowed to perform ECL detection in a very small volume (about 10 mul). The microoptoprobe obtained was characterized with the Ru(bpy)(3)(2-)-tripropylamine system and was applied for the determination of oxalate and chlorpromazine (CPZ). Detection limits (S/N = 3) were 5 x 10(-7) and 1 x 10(-6) mol l(-1) for oxalate and CPZ. respectively. The linear range for oxalate and CPZ extended from 1 x 10(-6) to 1 x 10(-3) mol l(-1), and from 5 x 10(-6) to 5 x 10(-4) mol l(-1). respectively.
Resumo:
To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid[(1/6)degrees] covering the area from 20degreesS to 50degreesN and from 99degrees to 150degreesE is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current. From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 in has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.
Resumo:
The monthly and annual mean freshwater, heat and salt transport through the open boundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6degrees resolution for the seas adjacent to China and 30 resolution for the global ocean. The model results are in fairly good agreement with the existing estimates based on measurements. The computation shows that the flows passing through the South China Sea contribute volume, heat and salt transport of 5.3 Sv, 0.57 PW and 184 Ggs(-1), respectively (about 1/4) to the Indonesian Throughflow, indicating that the South China Sea is an important pathway of the Pacific to Indian Ocean throughflow. The volume, heat and salt transport of the Kuroshio in the East China Sea is 25.6 Sv, 2.32 PW and 894 Ggs(-1), respectively. Less than 1/4 of this transport passes through the passage between Iriomote and Okinawa. The calculation of heat balance indicates that the South China Sea absorbs net heat flux from the sun and atmosphere with a rate of 0.08 PW, while the atmosphere gains net heat flux from the Baohai, Yellow and East China Seas with a rate of 0.05 PW.
Resumo:
A fine-grid model (1/6degrees) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3degrees) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.
Resumo:
By seismic tomography, interesting results have been achieved not only in the research of the geosphere with a large scale but also in the exploration of resources and projects with a small scale since 80'. Compared with traditional inversion methods, seismic tomography can offer more and detailed information about subsurface and has been being paid attention by more and more geophysicists. Since inversion based on forward modeling, we have studied and improved the methods to calculate seismic traveltimes and raypaths in isotropic and anisotropic media, and applied the improved forward methods to traveltime tomography. There are three main kinds of methods to calculate seismic traveltime field and its ray path distribution, which are ray-tracing theory, eikonal equation by the finite-difference and minimum traveltime tree algorithm. In ray tracing, five methods are introduced in the paper, including analytic ray tracing, ray shooting, ray bending, grid ray tracing and rectangle grid ray perturbation with three points. Finite-difference solution of eikonal equation is very efficient in calculation of seismic first-break, but is awkward in calculation of reflection traveltimes. We have put forward a idea to calculate traveltimes of reflected waves using a combining way of eikonal equation method and other one in order to improve its capability of dealing with reflection waves. The minimum traveltime tree algorithm has been studied with emphases. Three improved algorithms are put forward on the basis of basic algorithm of the minimum traveltime tree. The first improved algorithm is called raypath tracing backward minimum traveltime algorithm, in which not only wavelets from the current source but also wavelets from upper source points are all calculated. The algorithm can obviously improve the speed of calculating traveltimes and raypaths in layered or blocked homogeneous media and keep good accuracy. The second improved algorithm is raypath key point minimum traveltime algorithm in which traveltimes and raypaths are calculated with a view of key points of raypaths (key points of raypths mean the pivotal points which determine raypaths). The raypath key point method is developed on the basis of the first improved algorithm, and has better applicability. For example, it is very efficient even for inhomogeneous media. Another improved algorithm, double grid minimum traveltime tree algorithm, bases upon raypath key point scheme, in which a model is divided with two kinds of grids so that the unnecessary calculation can be left out. Violent undulation of curved interface often results in the phenomenon that there are no reflection points on some parts of interfaces where there should be. One efficacious scheme that curved interfaces are divided into segments, and these segments are treated respectively is presented to solve the problem. In addition, the approximation to interfaces with discrete grids leads to large errors in calculation of traveltimes and raypaths. Noting the point, we have thought a new method to remove the negative effect of mesh and to improve calculation accuracy by correcting the traveltimes with a little of additional calculation, and obtained better results.
Resumo:
The grid is a foundation of reservoir description and reservoir simulation. The scale of grid size is vital influence for the precision of reservoir simulation the gridding of reservoir parameters require reasonable interpolation method with computing quickly and accurately. The improved distant weighted interpolation method has many properties, such as logical data points selection, exact interpolation, less calculation and simply programming, and its application can improve the precision of reservoir description and reservoir simulation. The Fractal geologic statistics describes scientifically the distribution law of various geological properties in reservoir. The Fractal interpolation method is applied in grid interpolation of reservoir parameters, and the result more accorded with the geological property and configuration of reservoir, and improved the rationality and quality of interpolation calculation. Incorporating the improved distant weighted interpolation method with Fractal interpolation method during mathematical model of grid-upscaling and grid-downscaling, the softwares of GROUGH(grid-upscaling) and GFINE (grid-downscaling) were developed aiming at the questions of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation. The softwares of GROUGH and GFINE initial applied in the research of fined and large-scale reservoir simulation. It obtained fined distribution of remaining oil applying grid-upscaling and grid-downscaling technique in fined reservoir simulation of Es21-2 Shengtuo oilfield, and provided strongly and scientific basis for integral and comprehensive adjustment. It's a giant tertiary oil recovery pilot area in the alkaline/surfactant/polymer flooding pilot area of west district of Gudao oilfield, and first realized fined reservoir simulation of chemical flooding using grid-upscaling and grid-downscaling technique. It has wide applied foreground and significant research value aiming at the technique of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation.