74 resultados para glutathione metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up to now, in vivo studies on the toxic effects of microcystins (MCs) on the ultrastructures of fish liver have been very limited. The phytoplanktivorous silver carp was injected i.p. with extracted hepatotoxic microcystins (mainly MC-RR and -LR) at a dose of 1000 mu g MC-LReq. kg(-1) body weight, showing a time-dependent ultrastructural change in liver as well as significant increases in enzyme activity of plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH). We observed for the first time the occurrence of a large amount of activated secondary lysosomes, which might be an adaptive mechanism to eliminate or lessen cell damage caused by MCs through lysosome activation. Quantitative and qualitative determinations of MCs in the liver were conducted by HPLC and LC-MS2, respectively. MCs concentration in the liver reached the maximum (114.20 mu g g(-1) dry weight) after 3 h post-injection, and then rapidly dropped to 7.57 mu g g(-1) dry weight at 48 h, indicating a deputation of 99% accumulated MC-LReq. On the other hand, a decrease trend in glutathione (GSH) concentration was observed in the liver of silver carp while the activity of glutathione S-transferase (GST) increased significantly after injection. The high tolerance of silver carp to MCs might be due to the high basic GSH level in their liver, and/or an increased GSH synthesis. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the effect of dietary vitamins A, D-3, E, and C on the gonad development, lipid peroxidation, and immune response of yearling rice field eel, Monopterus albus. A 6-wk feeding trial was designed according to an L-16(4(5)) orthogonal design, in which four vitamins, each at four supplementation levels, were arranged. Sixteen diets were mixed with the different vitamin levels and randomly assigned to 16 groups of fish. Increasing dietary vitamin E supplementation level significantly (P <= 0.05) increased the gonadosomatic index and lowered the serum content of malondialdehyde of rice field eel. Increasing dietary vitamin A and C levels also showed similar effect, but the differences were not statistically significant. Serum immunoglobulin M content increased significantly (P <= 0.01) as dietary vitamin C supplementation levels increased. The concentrations of calcium in bones showed significant (P <= 0.05) trend with vitamin D-3 and A supplementation levels, but the bone phosphorus content was not affected by the dietary vitamin levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glutathione S-transferases play important roles in the detoxification of microcystin. In this experiment, nine glutathione S-transferase genes including cytosolic GSTs (rho, mu, theta, alpha and pi), mitochondrial GST (kappa) and microsomal GSTs (mGST1, mGST2 and mGST3) were cloned from common carp Cyprinus carpio. The mRNA abundance of each carp GST isoform in liver was analyzed by real time PCR. The relative changes after stimulation with microcystin LR were also analyzed: increased levels of transcription of GST alpha, rho and mGST3 isoforms were detected at 6 h post stimulation; the transcription of mu, theta and mGST2 isoforms were relatively stable; and all the GST isoforms except GST kappa and rho recovered to original levels compared with controls at 72 h. It is suggested that MC-LR showed different effects on the transcription of nine carp GST isoforms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrahymena thermophila BF5 produce heat by metabolism and movement. Using a TAM air isothermal microcalorimeter, the power-time curves of the metabolism of T thermophila BF5 during growth were obtained and the action on them by the addition of Cr(VI) were studied. The morphological change with Cr(VI) coexisted and biomass change during the process of T thermophila BF5 growth were studied by light microscope. Chromium has been regarded as an essential trace element for life. However, hexavalent chromium is a known carcinogen, mutagen, cytotoxicant and strong oxidizing agent. Cr(VI) of different concentration have different effects on T thermophila BF5 growth with the phenomenon of low dose stimulation (0-3 x 10(-5) mol L-1) and high dose inhibition (3 x 10(-5) to 2.4 x 10(-4) mol L-1). The relationship between the growth rate constant (k) and c is a typical U-shaped curve, which is a characteristic of hormesis. T thermophila BF5 cannot grow at all when the concentration of Cr(VI) is up to 2.4 x 10(-4) mol L-1. The microscopic observations agree well with the results obtained by means of microcalorimetry. And T thermophila BF5 had obviously morphological changes by the addition of Cr(VI). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of salt stress on carbohydrate metabolism in Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crusts, were investigated in the present study. Extracellular total carbohydrates and exopolysaccharides (EPS) in the culture medium produced by M. vaginatus increased significantly during the growth phase and reached a maximum during the stationary phase. The production of extracellular carbohydrates also significantly increased under higher salt concentrations, which was attributed to an increase in low molecular weight carbohydrates. In the presence of NaCl, the production of cellular total carbohydrates decreased and photosynthetic activity was impaired, whereas cellular reducing sugars, water-soluble sugars and sucrose content and sucrose phosphate synthase activity increased, reaching a maximum in the presence of 200 mmol/L NaCl. These parameters were restored to original levels when the algae were transferred to a non-saline medium. Sodium and K+ concentrations of stressed cells decreased significantly and H+-ATPase activity increased after the addition of exogenous sucrose or EPS. The results suggest that EPS and sucrose are synthesized to maintain the cellular osmotic equilibrium between the intra- and extracellular environment, thus protecting algal cells from osmotic damage, which was attributed to the selective exclusion of cellular Na+ and K+ by H+-ATPase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insecticide dichlorodiphenyltrichloroethane (DDT) is persistent in the environment, and continues to cause health problems. Tetrahymena has potential as a model organism for assaying low levels of DDT and for analysing the mechanisms of its toxicity. We constructed the suppression subtractive hybridization library of T thermophila exposed to DDT, and screened out 90 Expressed Sequence Tags whose expressions were significantly up- or downregulated with DDT treatment. From this, a series of important genes related to the DDT metabolism and detoxification were discovered, such as P450 gene, glutathione S-transferase gene and sterol carrier protein 2 gene. Furthermore, their expressions under different concentrations of DDT treatment were detected by real-time fluorescent quantitative PCR. The results show that Tetrahymena is a relevant and useful model organism for detecting DDT in the environment and for discovering biomarkers that can be used to develop specific bio-reporters at the molecular and genomic levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resting metabolism was measured in immature mandarin fish Siniperca chuatsi weighing 42.1-510.2 g and Chinese snakehead Channa argus weighing 41.5-510.3 g at 10, 15, 20, 25, 30 and 35 degreesC. Heat increment of feeding was measured in mandarin fish weighing 202.0 (+/-14.0) g and snakehead weighing 200.8 (+/-19.3) g fed swamp leach Misgurnus anguillicaudatus at 1% body weight per day at 28 degreesC. In both species, weight exponent in the power relationship between resting metabolism and body weight was not affected by temperature. The relationship between resting metabolism and temperature could be described by a power function. The temperature exponent was 1.39 in mandarin fish and 2.10 in snakehead (P < 0.05), indicating that resting metabolism in snakehead increased with temperature at a faster rate than in mandarin fish. Multiple regression models were used to describe the effects of body weight (W, g) and temperature (T, C) on the resting metabolism (R-s, mg O-2/h): In R-s = - 5.343 + 0.772 In W + 1.387 In T for the mandarin fish and In R-s = -7.863 + 0.801 ln W + 2.104 In T for the Chinese snakehead. The proportion of food energy channelled to heat increment was 8.7% in mandarin fish and 6.8% in snakehead. (C) 2000 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of phosphorus cycling in algal metabolism was studied in a shallow lake, Donghu, in Wuhan using the methods of measuring cell quota C, N and P, and calculating nutrients uptake rate by algal photosynthesis. The mean daily phosphorus uptake rate of phytoplankton varied between 0.04-0.11 and 0.027-0.053 g/m2/d in station I and station II respectively. The turnover time of phosphorus in phytoplankton metabolism ranged from 0.75-5.0 days during 1979-1986. The available P was 0.176 (+/- 0.156) g/m3 (mean +/- SD) in 1982 and 0.591 (+/- 0.24) g/m3 in 1986. The relationship between P/B ratio (Y) and TP (X: mg/l) was described by the following regression equation Y = 1.163 + 0.512logX (r = 0.731, P < 0.001). The dynamics of algal biomass and algal species succession were monitored as the indicators of environmental enrichment. The small-sized algae have replaced the blue-green algae as the dominant species during 1979-1986. The small-sized algae include Merismopedia glauca, Cryptomonas ovata, Cryptomonas erosa, several species Cyclotella. There has been drastic decrease in algal biomass and an obvious increase in P/B ratio. A nutrient competition hypothesis is proposed to explain the reason of the disappearance of blue-green algae bloom. The drastic change in algal size and the results in high P/B ratio (reaching a maximum mean daily ratio of 1.09 in 1986) may suggest a transition of algal species from K-selection to r-selection in Lake Donghu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

近二十多年来,基于对臭氧层衰减、紫外线B(UV-B)增强的担心,研究者希望了解到紫外线辐射对不同作物的影响情况,增强UV-B辐射条件下是否对作物的生长发育、产量质量构成威胁。在本试验中,我们首先探讨了双子叶作物黄瓜(Cucumis sativus)和大豆(Glycine max)对不同紫外波段的生物效应[分别为B-UVA(315-400 nm),N-UVA(315-340 nm),B-UVB(275-400 nm)和N-UVB(290-340 nm),UV-(>400nm)作对照]。我们观察到所有的UV波段处理都使黄瓜和大豆的生长受到抑制,并且细胞受到不同程度的氧化伤害;UV波段处理的作用效果与不同波段的紫外有效生物辐射剂量有关。处理差异在UV-B波段内部和UV-A波段内部同样存在。植物生长UV辐射公式(BSWF)能很好的预测本试验UV-B波段内的平均植物效应,但不能预测UV-A波段的植物效应。短波UV-A的生物作用强于长波UV-A。光合色素的变化与UV波谱差异和种间差异有关。在高的紫外/可见光背景下,UV-A处理同UV-B同样导致光合色素的降低,但黄瓜类胡萝卜素/叶绿素比例升高。与其他研究者的试验结果比较后,我们认为紫外线B辐射的生物效应一致性很高,但紫外线A波段的生物学效应存在较大争议。因此我们在本试验的基础上仅进行荞麦[苦荞(Fagopyrum tataricum Gaertn.)和甜荞(Fagopyrum esculentum Moench.)]对紫外线B波段的响应研究。 我们对苦荞品种-圆籽荞进行了连续两个生长季节的大田半控制试验以观察UV-B辐射对苦荞生长、发育、产量及叶片色素的影响;试验小区进行降低UV-B、近充足UV-B和增强UV-B辐射处理。我们的试验表明在不同强度UV-B辐射下苦荞的生长、地上部生物量积累及最终产量都有所下降,但苦荞的发育加快;当前条件下的日光紫外线B辐射对植物生长和产量也造成负面影响。植物光合色素被日光及增强UV-B辐射降低;UV化合物及卢丁含量在中低剂量的UV-B辐射强度下显著升高,但在高剂量的增强UV-B辐射下短期升高后迅速下降。我们的试验表明苦荞是一个对UV-B高度敏感的作物。苦荞对UV-B的敏感性与UV-B剂量、外界环境因素及生长季节有关。 单个苦荞品种的试验结果使我们认识到外界UV-B辐射已经对苦荞生长发育构成逆境条件,未来全球气候变化条件下增强紫外线B辐射可能使其处于更不利的生长环境中。因此我们有进行了多个种群进行UV-B响应观察并筛选耐性种群。我们对15个苦荞种群进行增强UV-B辐射处理(6.30 kJ m2 UV-BBE,模拟当地25%的臭氧衰减),我们观察苦荞UV-B辐射效应存在显著的种内差异,UV-B辐射对多数种群具有抑制作用,但对一些种群还有刺激作用。我们采用主成分分析方法与作物UV-B响应指数(RI)来评价苦荞作物UV-B辐射耐性。我们发现作物的UV-B耐性不仅与其原产地背景UV-B强度有关,而且与作物相对生长效率、次生代谢产物含量(如卢丁)及其他因素有关。我们观察到苦荞伸展叶总叶绿素变化与UV-B耐性成正相关;室内苦荞幼苗的UV-B辐射致死试验表明:苦荞种群死亡率与其UV-B耐性成负相关。 此外,我们对甜荞的UV-B辐射响应也进行了初步研究。选取美姑甜荞、巧家甜荞和云龙甜荞进行5个梯度的增强UV-B辐射室外模拟试验。我们观察到UV-B辐射显著降低了甜荞的生长、生物量及产量;并严重影响了甜荞的生殖生长,降低了花序数、种子数和结实率;并且UV-B辐射对甜荞的抑制作用存在显著的剂量效应。三种甜荞品种存在显著的种内差异,其中美姑品种UV-B耐性最强,且膜脂受UV-B辐射氧化伤害最小,这与该品种UV-B辐射下较高的GR酶活性、APX酶活性和PPO酶活性、以及含量更高的抗坏血酸有关。甜荞的次生代谢也受到增强UV-B辐射的影响,其香豆酰类化合物在UV-B辐射下升高显著,而槲皮素含量也在高剂量UV-B辐射下有所增加;卢丁含量依赖UV-B辐射剂量而变化,中低剂量UV-B辐射下其卢丁含量逐渐升高,但在高剂量辐射下逐渐下降。 通过对生长在高海拔地区的荞麦作物(苦荞和甜荞)进行的室外研究,我们认识到作物不同品种存在很大的耐性差异,这就为UV-B耐性育种创造了有利条件。进一步加大荞麦种质资源筛选力度并深入认识荞麦抗性机理,在此基础上通过杂交或其他基因融合手段培育抗性品种,对高剂量UV-B辐射地区的荞麦产量的提高将起到重要推动作用,并使荞麦生产能有效应对未来全球气候变化条件下UV-B辐射可能升高的威胁。 During last few decades, due to concern of ozone layer depletion and enhancement of ultraviolet B radiation(UV-B, 280-315 nm), the agronomist want to know the responses of different crop species to UV-B. In the first experiment of our study, the effect of different UV band [B-UVA(315-400 nm), N-UVA(315-340 nm), B-UVB(275-400 nm), N-UVB(290-340 nm)and UV-(>400nm, as control)] on the cucumber(Cucumis sativus)and soybean(Glycine max)were investigated in growth room. Spectra-dependent differences in growth and oxidation indices existed within UV-A bands as well as UV-B bands. The general biological effects of different band were UV- < B-UVA< N-UVA<N-UVB<B-UVB. The plant growth biologically spectra weighting function(BSWF)matched well with average plant response in UV-B region, but not in UV-A region. Shorter UV-A wavelength imposed more negative impact than longer UV-A wavelength did in both species. The effect on photosynthetic pigment was related to different UV bands and different species. The photosynthetic pigment content was decreased by UV-A spectra as well as UV-B spectra. In comparison with the results of previous studies, we found that the wavelength-dependent biological effect of ultraviolet B radiation has high consistency, but the biological effect of ultraviolet-A radiation was inconsistent. We narrow our following study on the effect of ultraviolet B radiation on the buckwheat(tartary buckwheat and common buckwheat). The tartary buckwheat(Fagopyrum tataricum Gaertn.)cultivars Yuanziqiao was grown in the sheltered field plots for two consecutive seasons under reduced, near-ambient and two supplemental levels of UV-B radiation. The crop growth, photosynthetic pigments, total biomass, final seed yield and thousand-grain weight were decreased by near-ambient and enhanced UV-B radiation, while crop development was promoted by enhanced UV-B radiation. Leaf rutin concentration and UV-B absorbing compound was generally increased by UV-B with the exception of 8.50 kJ m-2 day-1 supplemental levels. Our results showed that tartary buckwheat is a potentially UV-B sensitive species. Study on one cultivars showed that ambient solar radiation had present a stress to tartary buckwheat. This makes it necessary to observe the UV-B response of many cultivars and screen tolerant cultivars. Fifteen populations of tartary buckwheat were experienced enhanced UV-B radiation simulating 25% depletion of the stratospheric ozone layer in Kunming region, and plant responses in growth, morphology and productivity were observed. Principal components analysis(PCA)was used to evaluate overall sensitivity of plant response to UV-B as well as response index. The different populations exhibited significant differences in responses to UV-B. The photosynthetic pigments of young seedlings were also affected significantly under field condition. On the other hand, the healthy seedlings of different populations were exposed to the high level of UV-B radiation in growth chambers to determine the plant lethality rate. The plant tolerance evaluated by multivariate analysis was positively related to total plant chlorophyll change, but negatively related to lethality rate. In other hand, the UV-B responses of the other important cultivated buckwheat species, common buckwheat(Fagopyrum esculentum Moench.), were also studied preliminarily. Three widespread cultivated variety(Meigu, Qiaojia and Yunlong cultivars)were provided with five level of enhanced UV-B radiation outdoors. We observed that the crop growth, development and production were significantly decreased, and reproductive production, like anthotaxy number, seed number and seed setting ratio, was also decreased. Dose-dependent inhibition effect caused by enhanced UV-B radiation also existed in common buckwheat. Significant intraspecific difference existed in those three cultivars. The Meigu cultivars with dwarfed growth and lower production have highest UV-B tolerance as well as lowest damage in cell membrane, this could be associated with profound enhancements of glutathione reductase(GR)activity, ascorbate peroxidase activity and polyphenol oxidase activity as well as higher ascorbic acid concentration. The secondary metabolism was also affected by UV-B radiation, with profound elevation of coumarin compound and moderate increase of quercetin concentration. Rutin concentration was peaked in 5kJ m-2 UV-B. The contrasting effect of UV-B radiation on different populations indicated that there existed abundant genetic resources for selecting tolerant populations of common and tartary buckwheat. Much effort needed be pose on screening of buckwheat germplasm and clarification of mechanism of buckwheat tolerance to UV-B. On this base the tolerant cultivars could be bred by hybridization and other gene transfusion method, this would help increase buckwheat yield in high ambient UV-B region and counteract the effect of possible enhanced UV-B radiation in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

沙棘广泛分布于亚欧大陆的温带地区和亚洲亚热带的高海拔地区。沙棘能适应多种生态环境,能耐受多种逆境(如干旱、低温、高温和盐害等)。在中国,沙棘常常被用作植被恢复中的先锋树种而大量栽培。本文以中国沙棘为试验材料,探索沙棘适应干旱机制,以及沙棘对干旱胁迫的适应机制是否存在种群间的差异,同时试图通过分析干旱胁迫下沙棘叶片蛋白质表达变化探索沙棘适应干旱胁迫的分子机理。 对三个分别来自低海拔湿润地区、低海拔干旱地区和高海拔湿润地区的中国沙棘种群进行干旱胁迫处理。干旱胁迫能提高根冠比,比叶面积,降低平均叶面积和总生物量,提高沙棘的抗氧化性酶活性、脯氨酸含量、脱落酸(ABA)含量、降低光合作用,提高长期用水效率。实验中的这两个低海拔种群比高海拔种群抵抗干旱的能力更强,不同的种群采用了不同的策略来耐受干旱胁迫和过氧化胁迫。 在2004 年度的实验中,干旱胁迫处理下,高海拔湿润种群(道孚种群)严重失水,生长也受到更大的抑制,非气孔因素在抑制光合作用方面占支配地位,抗坏血酸含量下降,ABA和脯氨酸含量增加幅度比九寨沟种群的要高,这可能是因为道孚种群严重失水而引起的;而低海拔湿润种群(九寨沟种群)的体内水分状况几乎不受干旱的影响,生长情况也较道孚种群要好。 在2005 年度的试验中,和高海拔湿润地区种群(道孚)相比较,低海拔干旱地区种群(定西)在叶片相对水含量、根冠比、抗氧化酶活性(过氧化氢酶、抗坏血酸过氧化物酶和谷胱甘肽过氧化物酶)、保护性物质(脯氨酸,脱落酸)含量等方面都要高,光能热耗散能力也更强,而且气体交换参数(气孔扩散阻力和胞间CO2浓度等)对干旱也更不敏感。 分析了干旱胁迫下沙棘叶片蛋白质表达的变化。共发现319 个蛋白质,有4 个蛋白在干旱胁迫下消失(Putative ABCtransporter ATP-binding protein 、Hypothetical proteinXP-515578,热激蛋白Hslu219 和一个没得到鉴定的蛋白),4 个只在干旱胁迫下出现(没命名的蛋白质产物,对甲基苯-丙酮酸双加氧酶,NTrX 和一个没得到鉴定的蛋白),46 个蛋白质的表达丰度变化显著,包括32 个干旱负调蛋白,14 个干旱正调蛋白(3 个Rubisco 的大亚基、J-type–co-chaperone Hsc20、putative protein DSM3645-2335、putative acyl-COA 脱氢酶、nesprin-2 和两个没有得到鉴定的蛋白质)。这些蛋白质参与了氮代谢调控、抗氧化行物质的合成、脂肪酸β-氧化、核骨架构造、[Fe-S]基团组装、物质跨膜运输、细胞分裂或作为分子伴侣和蛋白质酶起作用。putative ABC transporter ATP-binging protein、NtrX、nesprin-2 和Hslu 是本试验新发现的高等植物蛋白,我们主要从它们的保守结构域或在其他生物中的同源物来猜测它们的功能。实验结果为我们研究植物抗干旱机制提供了新线索和新视野。 Seabuckthorn (Hippophae rhamnoides L.) is widly distributed throughtout the temperatureresiogn of Europe and Asia and sub-tropical plateau zone of Asia. H. rhamnoides can adapatseveral different environments, and can tolerant several envioronmental stresses (e.g, lowtemperature, high temperature, drought and salty). It has been widely used in forest restoration asthe pioneer species in China. In present study, we applied H.rhamnoides subsp. Sinensis asexperimental materials to study its drought-tolerant mechanism, and expected to findpopulational difference in drought-tolerant mechanism that may exist among populations, and tryto get some insight in drought-tolerant mechanism of it at morecular level through analyzing thechange of leaf protein expression. Three populations from high altitude wet zone, low altitude wet zone and low altitude arid znoe,respectively, were applied in our experiment, and were subjected to drought. Drought increasedthe root/shoot ratio(RS), special leaf area, long-term water use efficinency, activity of antioxidantenzymes, proline content and abscisic acid (ABA) content, declined the net photosynthesis rate(A), average leaf area (ALA), total biomass (TB). Both two low altitude populations were moredrought-tolerant than the high altitude population, and different population applied differentstratedgies to tolerant oxidant stress and drought stress. The results of the exprement in 2004 showed that Daofu population was more drought-sensitivethan Jiuzhai population. Under drought conditions, leaf relative water content (RWC) greatlydecreased in Daofu population, but not in Jiuzhai population. The large loss of water in Daofupopulation resulted in a limitation on A mainly caused by non-stomatal factors, severer suppression in growth rate and a significant reduction in ascorbic acid (AsA) content, comparedwith Jiuzhai population. The greater increase in content of ABA and proline in Daofu populationmay be also induced by large loss in water, so that enable plants to cope with sever drought. In the exprement of 2005, drought significantly increased RS, activities of catalase (CAT),peroxidase (POD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX), and alsosignificantly increased ABA and proline contents. On the other hand, compared with Daofupopulation, drought induced larger RS and activities of CAT, GPX and APX, and higher ABAcontent in Dingxi population, whereas gas exchange traits, e.g., stomatal limitation value (LS) andintercellular CO2 concentration (Ci), were less responsive to drought in Dingxi population thanthose in Daofu population. All these factors enable Dingxi population to tolerant drought betterthan Daofu population. The leaf protein profile of seabuchthorn subjected to drought was analyzed. Altogether 319proteins were detected in well-watered sample, four proteins disappeard by drought (putativeABCtransporter ATP-binding protein, hypothetical protein XP-515578, Hslu219and aunidentified protein), four only appeared under drought (a probable nitrogen regulation protein(NtrX), a 4-hydroxyphenylpyruvate dioxygenase , an unnamed protein product and an identified protein), 32 drought down-regulated proteins, and 14 drought up-regulated proteins (nine wereidentified: three large subunits of Rubisco, a hypothetical protein DSM3645-23351, a putativeacyl-COA dehydrogenase, a nesprin-2, a J-type-co-chaperone HSC20 and two unmatchedproteins). These proteins may involve in β-oxidation, cross-membrane transport, cell division,cytoskeleton stabilization, iron-sulfur cluster assembly, nitrogen metabolism regulation andantioxidant substance biosynthesis or function as molecular chaperone or protease. Four proteins(a putative ABC transporter ATP-binging protein, NtrX, nesprin-2, Hslu) were new found in highplants, and their functions were estimated from their conserved domain or their homologues inother organism. Our results provided new clue and new insight for us to study thedrought-tolerant mechanism in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 3A4 (CYP3A4), a major member of cytochrome P450 isoenzymes, metabolizes the majority of steroids in 6beta-position. For the purpose of determining requisite structural features of a series of structurally related steroids for CYP3A4-mediated metabolism, three-dimensional pharmacophore modeling as well as electrotopological state map were conducted for 15 steroids. Though prior studies speculated that the chemical reactivity of the allylic 6beta-position might have a greater influence on CYP3A4 selective 6-hydroxylation than steric constraints in the enzyme, our results reveal that for CYP3A4 steroidal substrates, it is not the chemical reactivity of atoms at 6beta-site, but the pharmacophoric features, i.e. the two hydrophobic rings together with two H-bond donors, that act as the key factors responsible for detemining the CYP3A4 selective 6-hydroxylation of steroids. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant cell cultures have been suggested as a feasible technology for the production of a myriad of plant-derived metabolites. However, commercial application of plant cell culture has met limited success with only a handful of metabolites produced at the pilot- and commercial-scales. To improve the production of secondary metabolites in plant cell cultures, efforts have been devoted predominantly to the optimization of biosynthetic pathways by both process and genetic engineering approaches. Given that secondary metabolism includes-the synthesis. metabolism and catabolism of endogenous compounds by the specialized proteins, this review intends to draw attention to the manipulation and optimization of post-biosynthetic events that follow the formation of core metabolite structures in biosynthetic pathways. These post-biosynthetic events-the chemical and enzymatic modifications, transport, storage/secretion and catabolism/degradation have been largely unexplored in the past. Potential areas are identified where further research is needed to answer fundamental questions that have implications for advanced bioprocess design. Anthocyanin production by plant cell cultures is used as a case study for this discussion, as it presents a good example of compounds for which there are extensive research publications but still no commercial bioprocess. It is perceived that research on post-biosynthetic processes may lead to future opportunities for significant advances in commercial plant cell cultures. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Net organic metabolism (that is, the difference between primary production and respiration of organic matter) in the coastal ocean may be a significant term in the oceanic carbon budget. Historical change in the rate of this net metabolism determines the importance of the coastal ocean relative to anthropogenic perturbations of the global carbon cycle. Consideration of long-term rates of river loading of organic carbon, organic burial, chemical reactivity of land-derived organic matter, and rates of community metabolism in the coastal zone leads us to estimate that the coastal zone oxidizes about 7 × 1012 moles C/yr. The open ocean is apparently also a site of net organic oxidation (∼16 × 1012 moles C/yr). Thus organic metabolism in the ocean appears to be a source of CO2 release to the atmosphere rather than being a sink for atmospheric carbon dioxide. The small area of the coastal ocean accounts for about 30% of the net oceanic oxidation. Oxidation in the coastal zone (especially in bays and estuaries) takes on particular importance, because the input rate is likely to have been altered substantially by human activities on land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has become clear that the last 15-20 years that the immediate effect of a wide range of environmental stresses,and of infection,on vascular plants is to increase the information of reactive oxygen species(ROS) and to impose oxidative stress on the cells.Since 1994,sufficient examples similar responses in a broad range of marine macroalgae have been decribed to show that reactive oxygen metabolism also underlies the mechanisms by which seaweeds respond(and become resistant) to stress and infection.Desiccation,freezing,low temperatures,high light,ultraviolet radiation,and heavy metals all tend to result in a gradual and continued buildup of ROS because photosynthesis is inhibited and excess energy results in the formation of singlet oxygen.The response to other stresses (infection or oligosaccharides which signal that infection is occurring,mechanical stress,hyperosmotic shock) is quite different-a more rapid and intence,but short-lived production of ROS ,discribed as an "oxidative burst"-which is attributed to activation of NADPHoxidases in the plasma membrane.Seaweed species that are able to survive such stresses or resist infection have the capacity to remove the ROS through a high cellular content of antioxidant compounds,or a high activity of antioxidant enzymes.