85 resultados para glucose metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the effect of dietary vitamins A, D-3, E, and C on the gonad development, lipid peroxidation, and immune response of yearling rice field eel, Monopterus albus. A 6-wk feeding trial was designed according to an L-16(4(5)) orthogonal design, in which four vitamins, each at four supplementation levels, were arranged. Sixteen diets were mixed with the different vitamin levels and randomly assigned to 16 groups of fish. Increasing dietary vitamin E supplementation level significantly (P <= 0.05) increased the gonadosomatic index and lowered the serum content of malondialdehyde of rice field eel. Increasing dietary vitamin A and C levels also showed similar effect, but the differences were not statistically significant. Serum immunoglobulin M content increased significantly (P <= 0.01) as dietary vitamin C supplementation levels increased. The concentrations of calcium in bones showed significant (P <= 0.05) trend with vitamin D-3 and A supplementation levels, but the bone phosphorus content was not affected by the dietary vitamin levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrahymena thermophila BF5 produce heat by metabolism and movement. Using a TAM air isothermal microcalorimeter, the power-time curves of the metabolism of T thermophila BF5 during growth were obtained and the action on them by the addition of Cr(VI) were studied. The morphological change with Cr(VI) coexisted and biomass change during the process of T thermophila BF5 growth were studied by light microscope. Chromium has been regarded as an essential trace element for life. However, hexavalent chromium is a known carcinogen, mutagen, cytotoxicant and strong oxidizing agent. Cr(VI) of different concentration have different effects on T thermophila BF5 growth with the phenomenon of low dose stimulation (0-3 x 10(-5) mol L-1) and high dose inhibition (3 x 10(-5) to 2.4 x 10(-4) mol L-1). The relationship between the growth rate constant (k) and c is a typical U-shaped curve, which is a characteristic of hormesis. T thermophila BF5 cannot grow at all when the concentration of Cr(VI) is up to 2.4 x 10(-4) mol L-1. The microscopic observations agree well with the results obtained by means of microcalorimetry. And T thermophila BF5 had obviously morphological changes by the addition of Cr(VI). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of salt stress on carbohydrate metabolism in Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crusts, were investigated in the present study. Extracellular total carbohydrates and exopolysaccharides (EPS) in the culture medium produced by M. vaginatus increased significantly during the growth phase and reached a maximum during the stationary phase. The production of extracellular carbohydrates also significantly increased under higher salt concentrations, which was attributed to an increase in low molecular weight carbohydrates. In the presence of NaCl, the production of cellular total carbohydrates decreased and photosynthetic activity was impaired, whereas cellular reducing sugars, water-soluble sugars and sucrose content and sucrose phosphate synthase activity increased, reaching a maximum in the presence of 200 mmol/L NaCl. These parameters were restored to original levels when the algae were transferred to a non-saline medium. Sodium and K+ concentrations of stressed cells decreased significantly and H+-ATPase activity increased after the addition of exogenous sucrose or EPS. The results suggest that EPS and sucrose are synthesized to maintain the cellular osmotic equilibrium between the intra- and extracellular environment, thus protecting algal cells from osmotic damage, which was attributed to the selective exclusion of cellular Na+ and K+ by H+-ATPase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen phosphorylase (GlgP, EC 2.4.1.1) catalyzes the cleavage of glycogen into glucose-1-phosphate (Glc-1-P), the first step in glycogen catabolism. Two glgP homologues are found in the genome of Synechocystis sp. PCC 6803, a unicellular cyanobacterium: sll1356 and slr1367. We report on the different functions of these glgP homologues. sll1356, rather than slr1367, is essential for growth at high temperatures. On the other hand, when CO2-fixation and the supply of glucose are both limited, slr1367 is the key factor in glycogen metabolism. In cells growing autotrophically, sll1356 plays a more important role in glycogen digestion than slr1367. This functional divergence is also supported by a phylogenetic analysis of glgP homologues in cyanobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resting metabolism was measured in immature mandarin fish Siniperca chuatsi weighing 42.1-510.2 g and Chinese snakehead Channa argus weighing 41.5-510.3 g at 10, 15, 20, 25, 30 and 35 degreesC. Heat increment of feeding was measured in mandarin fish weighing 202.0 (+/-14.0) g and snakehead weighing 200.8 (+/-19.3) g fed swamp leach Misgurnus anguillicaudatus at 1% body weight per day at 28 degreesC. In both species, weight exponent in the power relationship between resting metabolism and body weight was not affected by temperature. The relationship between resting metabolism and temperature could be described by a power function. The temperature exponent was 1.39 in mandarin fish and 2.10 in snakehead (P < 0.05), indicating that resting metabolism in snakehead increased with temperature at a faster rate than in mandarin fish. Multiple regression models were used to describe the effects of body weight (W, g) and temperature (T, C) on the resting metabolism (R-s, mg O-2/h): In R-s = - 5.343 + 0.772 In W + 1.387 In T for the mandarin fish and In R-s = -7.863 + 0.801 ln W + 2.104 In T for the Chinese snakehead. The proportion of food energy channelled to heat increment was 8.7% in mandarin fish and 6.8% in snakehead. (C) 2000 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of phosphorus cycling in algal metabolism was studied in a shallow lake, Donghu, in Wuhan using the methods of measuring cell quota C, N and P, and calculating nutrients uptake rate by algal photosynthesis. The mean daily phosphorus uptake rate of phytoplankton varied between 0.04-0.11 and 0.027-0.053 g/m2/d in station I and station II respectively. The turnover time of phosphorus in phytoplankton metabolism ranged from 0.75-5.0 days during 1979-1986. The available P was 0.176 (+/- 0.156) g/m3 (mean +/- SD) in 1982 and 0.591 (+/- 0.24) g/m3 in 1986. The relationship between P/B ratio (Y) and TP (X: mg/l) was described by the following regression equation Y = 1.163 + 0.512logX (r = 0.731, P < 0.001). The dynamics of algal biomass and algal species succession were monitored as the indicators of environmental enrichment. The small-sized algae have replaced the blue-green algae as the dominant species during 1979-1986. The small-sized algae include Merismopedia glauca, Cryptomonas ovata, Cryptomonas erosa, several species Cyclotella. There has been drastic decrease in algal biomass and an obvious increase in P/B ratio. A nutrient competition hypothesis is proposed to explain the reason of the disappearance of blue-green algae bloom. The drastic change in algal size and the results in high P/B ratio (reaching a maximum mean daily ratio of 1.09 in 1986) may suggest a transition of algal species from K-selection to r-selection in Lake Donghu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

经过细心的条件选择实现了无甲烷条件下甲烷氧化菌沼气甲基弯菌81Z(methylosinus methanica 81Z)利用C2化合物的生长,同时 发现二碳代谢中间产物甘氨酸的胞外积累及对生长的抑制作用。又在此基础上从81Z原种中富集得到一株菌81Z-A,兼性生长能力大 幅度提高,而且除乙酸外又能利用丙酮酸、苹果酸、柠檬酸、葡萄糖而生长。对细胞氧化各种有机底物时氧吸收的测定及酶分析结 果发现了在其它甲烷氧化细菌中未曾发现的异柠檬酸裂解酶和苹果酸酶的存在,表明81Z除了具有通常II型菌的碳代谢途径外,具 有特殊的补偿代谢途径——乙醛酸支路以及从乙酸生糖的回补途径。因此推证其兼性生长的能力是固有的,从而说明了甲烷氧化菌 的专一性概念没有普遍意义。说明了81Z还能在含有二碳的培养基中厌氧生长,包括细胞的分裂和增值行为。虽然这种厌氧生长还 很弱,但至少可以说明它不是严格好氧的,这对于传统的关于甲烷氧化菌的严格好氧的概念是一个冲击。81Z正常条件下是利用甲 烷而生长的,当供给它乙酸、乙醛酸和丝氨酸时能促进含C-C键有机物氧化的活性,而对甲烷单加氧酶和其它C2化合物的氧化有抑 制或阻遏作用,对碳同化的丝氨酸途径的关键酶羟基丙酮酸还原酶有阻抑作用。同时也证明了81Z的甲烷单加氧酶和甲醇氧化活性 可被甲烷、甲醇所诱导,而因甲酸而降低。The growth of Methylosinus methanica 81Z on C2-compounds without methane was realized by selecting suitable conditions. The intermediate product Gly from its C2 metabolism was found to accumulate out cells and inhibit its growth. 81Z-A, which was obtained from 81Z by richening, could grow on C2- compounds rapidly. It can even grow on pyruvate, malate, citrate and glucose. The results of measurements of oxygen consumption by cell suspensions in the presence of various organic compounds and the results of enzyme assays of detected activities of isocitrate lyaze and malic enzyme in cell extracts which were not found in other methantrophs showed that 81Z possesses not only the regular carbon metabalic pathways but also some peculiar anaplerotic pathways--the glyoxylate cycle and the gluconeogenic pathway from acetate. As a consequence of these studies, its ability of facultative growth is inherent. Therefore, the concept of obligate dependence on C2- compounds of methanotrophs is not of universal significance. The ability of 81Z's growth(including desintegration and proliferation behaviour) on C2-compounds anaerobically was also demonstrated. Despite of the weakness of this growth, at least it could be said that 81Z is not strictly aerobic. This is a strike to the traditonal concept about the strictly aerobic action of methanotrophs. Regularly, 81Z grows on methane. The presence of acetate, glyoxylate and serine could increaze its ability of oxidizing the organic coumpounds containing C-C ponds. In contrast, they could inhibit the activities of MMO and other C2-compounds oxidation, they also repressed the key enzyme hydroxypyruvate reductase of the serine-pathway for carbon assimilation. At the some time, it was testified that the activities of MMO and methanol oxidation were inducible by methane or methanol and were lower in the presence of formate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 3A4 (CYP3A4), a major member of cytochrome P450 isoenzymes, metabolizes the majority of steroids in 6beta-position. For the purpose of determining requisite structural features of a series of structurally related steroids for CYP3A4-mediated metabolism, three-dimensional pharmacophore modeling as well as electrotopological state map were conducted for 15 steroids. Though prior studies speculated that the chemical reactivity of the allylic 6beta-position might have a greater influence on CYP3A4 selective 6-hydroxylation than steric constraints in the enzyme, our results reveal that for CYP3A4 steroidal substrates, it is not the chemical reactivity of atoms at 6beta-site, but the pharmacophoric features, i.e. the two hydrophobic rings together with two H-bond donors, that act as the key factors responsible for detemining the CYP3A4 selective 6-hydroxylation of steroids. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant cell cultures have been suggested as a feasible technology for the production of a myriad of plant-derived metabolites. However, commercial application of plant cell culture has met limited success with only a handful of metabolites produced at the pilot- and commercial-scales. To improve the production of secondary metabolites in plant cell cultures, efforts have been devoted predominantly to the optimization of biosynthetic pathways by both process and genetic engineering approaches. Given that secondary metabolism includes-the synthesis. metabolism and catabolism of endogenous compounds by the specialized proteins, this review intends to draw attention to the manipulation and optimization of post-biosynthetic events that follow the formation of core metabolite structures in biosynthetic pathways. These post-biosynthetic events-the chemical and enzymatic modifications, transport, storage/secretion and catabolism/degradation have been largely unexplored in the past. Potential areas are identified where further research is needed to answer fundamental questions that have implications for advanced bioprocess design. Anthocyanin production by plant cell cultures is used as a case study for this discussion, as it presents a good example of compounds for which there are extensive research publications but still no commercial bioprocess. It is perceived that research on post-biosynthetic processes may lead to future opportunities for significant advances in commercial plant cell cultures. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose is an important regulator of cell growth and metabolism. Uridine diphosphate sugars (UDP-sugars), as the intermediate products of metabolism, play pivotal roles as precursors in the synthesis of complex carbohydrates and glycolipids as well as lectose. It is very important to study their metabolism in cells in clinical biochemistry. A capillary electrophoretic method has been developed for the analysis of UDP-sugars and nucleotides, By using an uncoated capillary (70cm x 50 mu m) and 20 mmol/L borax buffer (pH 9), 4 important UDP-sugars can be analyzed in 15 min at 22 kV with satisfactory precision and sensitivity. The developed method has been applied to analyze UDP-sugars concentrations in lymphocytes, fibroblasts and mesangial cells, and the results show it not only is much better than HPLC method, but also can be used to measure the energy charge of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of glucose is possible with the enzymatic reaction of glucose oxidase and potentiometric detection. The signal is proportional to the concentration up to 50 mg/dl. This value is fixed by the concentration of oxygen in the sample. By adding catalase, concentrations up to 2000 mg/dl are detectable. The steepness of the calibration curve is not affected by oxygen concentrations greater than 4 mg/l. In contrast to amperometric sensors, an influence of deposits on the electrodes surface on the signal cannot be found with potentiometric sensors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Net organic metabolism (that is, the difference between primary production and respiration of organic matter) in the coastal ocean may be a significant term in the oceanic carbon budget. Historical change in the rate of this net metabolism determines the importance of the coastal ocean relative to anthropogenic perturbations of the global carbon cycle. Consideration of long-term rates of river loading of organic carbon, organic burial, chemical reactivity of land-derived organic matter, and rates of community metabolism in the coastal zone leads us to estimate that the coastal zone oxidizes about 7 × 1012 moles C/yr. The open ocean is apparently also a site of net organic oxidation (∼16 × 1012 moles C/yr). Thus organic metabolism in the ocean appears to be a source of CO2 release to the atmosphere rather than being a sink for atmospheric carbon dioxide. The small area of the coastal ocean accounts for about 30% of the net oceanic oxidation. Oxidation in the coastal zone (especially in bays and estuaries) takes on particular importance, because the input rate is likely to have been altered substantially by human activities on land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has become clear that the last 15-20 years that the immediate effect of a wide range of environmental stresses,and of infection,on vascular plants is to increase the information of reactive oxygen species(ROS) and to impose oxidative stress on the cells.Since 1994,sufficient examples similar responses in a broad range of marine macroalgae have been decribed to show that reactive oxygen metabolism also underlies the mechanisms by which seaweeds respond(and become resistant) to stress and infection.Desiccation,freezing,low temperatures,high light,ultraviolet radiation,and heavy metals all tend to result in a gradual and continued buildup of ROS because photosynthesis is inhibited and excess energy results in the formation of singlet oxygen.The response to other stresses (infection or oligosaccharides which signal that infection is occurring,mechanical stress,hyperosmotic shock) is quite different-a more rapid and intence,but short-lived production of ROS ,discribed as an "oxidative burst"-which is attributed to activation of NADPHoxidases in the plasma membrane.Seaweed species that are able to survive such stresses or resist infection have the capacity to remove the ROS through a high cellular content of antioxidant compounds,or a high activity of antioxidant enzymes.