341 resultados para glass ceramics


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Er3+ doped multicomponent fluoride based glass was prepared. These precursor fluoride glass samples were then heated using different schedules. Crystalline phase particles were successfully precipitated in the multicomponent fluoride glass samples after heat treatment. The influence of heat treatment on the spectroscopic properties of Er3+ in multicomponent fluoride based glass samples were discussed. Small changes of the Judd-Ofelt parameters Omega(i) (i = 2,4,6) were found in multicomponent fluoride glass samples before and after heat treatment compared to oxyfluoride telluride glass. Preparation conditions used to produce transparent multicomponent fluoride glass ceramics doped with rare-earth ions are discussed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transparent glass ceramics have been obtained by nucleation and growth of Y2Te6O15 or Er2Te5O13 cubic phase in a new Er3+-doped oxyfluoride tellurite glass. Effect of beat treatment on absorption spectra, luminescence and up-conversion properties in the oxyfluoride tellurite glass has been investigated. With heat treatment the ultraviolet absorption edge red shifted evidently for the oxyfluoride telluride glass. The near infrared emission that corresponds to Er3+:I-4(13/2)-> I-4(15/2) can be significantly enhanced after heat treatment. Under 980 nm LD pumping, red and green up-conversion intensity of Er3+ in the glass ceramic can be observed much stronger than that in the base glass. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We demonstrate broadband optical amplification at 1.3 mu m in silicate glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals with 980 nm excitation for the first time. The optical gain efficiency is calculated to be about 0.283 cm(-1) when the excitation power is 1.12 W. The optical gain shows similar wavelength dependence to luminescence properties. (C) 2007 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sheet resistance of laser-irradiated Ge2Sb2Te5 thin films prepared by magnetron sputtering was measured by the four-point probe method. With increasing laser power the sheet resistance undergoes an abrupt drop from 10(7) to 10(3) Omega/square at about 580 mW. The abrupt drop in resistance is due to the structural change from amorphous to crystalline state as revealed by X-ray diffraction (XRD) study of the samples around the abrupt change point. Crystallized dots were also formed in the amorphous Ge2Sb2Te5 films by focused short pulse laser-irradiated, the resistivities at the crystallized dots and the non-crystallized area are 3.375 x 10(-3) and 2.725 Omega m, sheet resistance is 3.37 x 10(4) and 2.725 x 10(7) Omega/square respectively, deduced from the I-V Curves that is obtained by conductive atomic force microscope (C-AFM). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文综述了近年来用于上转换发光的掺稀土离子氧氟微晶玻璃的研究概况,系统阐述了氧氟微晶玻璃中的上转换发光特性及其机理,提出了值得进一步研究的工作并对掺稀土离子氧氟微晶玻璃未来的前景做出了展望。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An interesting fluorescence intensity reverse photonic phenomenon between red and green fluorescence is investigated. The dynamic range. of intensity reverse between red and green fluorescence of Er( 0.5) Yb( 3): FOV oxyfluoride nanophase vitroceramics, when excited by 378.5nm and 522.5nm light respectively, is about 4.32 x 10(2). It is calculated that the phonon- assistant energy transfer rate of the electric multi- dipole interaction of {(4)G(11/2)( Er3+) -> F-4(9/2)( Er3+), F-2(7/2)( Yb3+). F-2(5/2)( Yb3+)} energy transfer of Er( 0.5) Yb( 3): FOV is around 1.380 x 10(8) s(-1), which is much larger than the relative multiphonon nonradiative relaxation rates 3.20 x 10(5) s(-1). That energy transfer rate for general material with same rare earth ion's concentration is about 1.194 x 10(5) s(-1). These are the reason to emerge the unusual intensity reverse phenomenon in Er( 0.5) Yb( 3): FOV. (C) 2007 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A red long lasting phosphor Zn-3(PO4)(2): Mn2+ Ga3+ (ZPMG) was prepared by ceramic method, and phase conversion and spectral properties were investigated. Results indicated that the phase conversion from alpha-Zn-3(PO4), beta-Zn-3(PO4)(2) to gamma-Zn-3(PO4)(2) occurs with different manganese concentration incorporated and sinter process. The structural change induced by the phase transformation results in a remarkable difference in the spectral properties. The possible luminescence mechanism for this red LLP with different forms has been illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Up-conversion of 45PbF(2)-45GeO(2)-10WO(3) oxy-fluoride glasses co-doped with Yb3+ and Er3+ ions were prepared by fusion method through melting at 1223 K and then annealing at 653 K for 4 h. Transmittance of the undoped host glass was beyond 73% in a range of 0.6-2.5 mu m and the co-doped glasses still provided good transmittance beyond 50%. Refractive indices of the host and co-doped glasses were 1.517 and 1.650, respectively. Blue, green and red fluorescence spectra were observed in a range of 400-700 nm under 980 nm diode laser excitation. Up-conversion spectra at about 410, 518, 530and 650 nm were assigned to the 4f electron transitions of H-2(9/2) -> I-4(15)/(2), H-2(15/2) -> I-4(15/2) S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2) of Er3+ ion, respectively. The mechanism of energy transfer between Yb3+ and Er3+ ions in the glass was analyzed. Raman shift shows the non-radiative relaxation of the glass sample is low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural evolution and property changes in Nd60Al10Fe20Co10 bulk metallic glass (BMG) upon crystallization are investigated by the ultrasonic method, x-ray diffraction, density measurement, and differential scanning calorimetry. The elastic constants and Debye temperature of the BMG are obtained as a function of annealing temperature. Anomalous changes in ultrasonic velocities, elastic constants, and density are observed between 600–750 K, corresponding to the formation of metastable phases as an intermediate product in the crystallization process. The changes in acoustic velocities, elastic constants, density, and Debye temperature of the BMG relative to its fully crystallized state are much smaller, compared with those of other known BMGs, the differences being attributed to the microstructural feature of the BMG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stiffness behaviour of injection moulded short glass fibre/impact modifier/polypropylene hybrid composites has been investigated in this work by theoretical predictions and experiments. Predictions from the self-consistent method were found to be in good agreement with test results for the impact modifier/polypropylene blends. By taking into account of the fibre orientation distributions in the skin and core layers, the values of Young's modulus for the skin and core layers were predicted by employing Eshelby's equivalent inclusion method and the average induced strain approach. The prediction of the values of Young's modulus for the whole sample was obtained by applying the simple mixture theory of laminated composites to the predicted results for the skin and core layers. Good correlation between predicted and experimental Young's modulus values were found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability of Nd60Fe20Co10Al10 bulk metallic glass (BMG) has been studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), isochronal dilatation and compression tests. The results show that the glass transition of the BMG takes place quite gradually between about 460 and 650 K at a heating rate of 0.17 K/s. Several transformation processes are observed during continuous heating with the first crystallization process beginning at about 460 K, while massive crystallization takes place near the solidus temperature of the alloy. The positive heat of mixing between the two major constituents, Nd and Fe, and, consequently, a highly inhomogeneous composition of the attained amorphous phase are responsible for the anomalous thermal stability in this system. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural variations of the Nd60Al10Fe20CO10 melt-spun ribbons and the as-cast rod were studied by high resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and differential scanning calorimetry. Nano-clusters in glassy m