82 resultados para geminite, acid-arsenate, arsenate, Raman spectroscopy
Resumo:
The phase transformation of zirconia from tetragonal to monoclinic is characterized by UV Raman spectroscopy, visible Raman spectroscopy, and XRD. Electronic absorption Of ZrO2 in the UV region makes UV Raman spectroscopy more sensitive at the surface region than XRD or visible Raman spectroscopy. Zirconia changes from the tetragonal phase to the monoclinic phase with calcination temperatures elevated and monoclinic phase is always detected first by UV Raman spectroscopy for the samples calcined at lower temperatures than that by XRD and visible Raman spectroscopy. When the phase of zirconia changes from tetragonal to monoclinic, the slight changes of the phase at very beginning can be detected by UV Raman spectroscopy. UV Raman spectra clearly indicate that the phase transition takes place initially at the surface regions. It is found that the phase change from tetragonal to monoclinic is significantly retarded when amorphous Zr(OH)(4) was agglomerated to bigger particles and the particle agglomeration of amorphous zirconium hydroxide is beneficial to the stabilization of t-ZrO2 phase.
Resumo:
Vanadium species in tetrahedral and octahedral coordination in V-MCM-41 molecular sieve are characterized by UV resonance Raman bands at 1070 and 930 cm(-1) respectively.
Resumo:
Coke formation on/in ZSM-5, USY and SAPO-34 zeolites was investigated during the methanol conversion to olefins at temperatures from 298 to 773 K using ultraviolet (UV) Raman spectroscopy. The fluorescence interference that usually obscures the Raman spectra of zeolites in the conventional Raman spectroscopy, particularly for coked catalysts, can be successfully avoided in the UV Raman spectroscopy. Raman spectra are almost the same for adsorbed methanol on the three zeolites at room temperature. However, the Raman spectra of the surface species formed at elevated temperatures are quite different for the three zeolites. Coke species formed in/on SAPO-34 are mainly polyolefinic species, and in/on ZSM-5 are some aromatic species, but polyaromatic or substituted aromatic species are predominant in USY at high temperatures. Most of the coke species can be removed after a treatment with O-2 at 773 K, while some small amount of coke species always remains in these zeolites, particularly for USY. The main reason for the different behavior of coke formation in the three zeolites could be attributed to the different pore structures of the zeolites. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Framework titanium in Ti-silicalite-1 (TS-1) zeolite was selectively identified by its resonance Raman bands using ultraviolet (W) Raman spectroscopy. Raman spectra of the TS-1 and silicalite-1 zeolites were obtained and compared using continuous wave laser lines at 244, 325, and 488 nm as the excitation sources. It was only with the excitation at 244 nm that resonance enhanced Raman bands at 490, 530, and 1125 cm(-1) appeared exclusively for the TS-1 zeolite. Furthermore, these bands increased in intensity with the crystallization time of the TS-1 zeolite. The Raman bands at 490, 530, and 1125 cm(-1) are identified as the framework titanium species because they only appeared when the laser excites the charge-transfer transition of the framework titanium species in the TS-1. No resonance Raman enhancement was detected for the bands of silicalite-1 zeolite and for the band at 960 cm(-1) of TS-1 with any of the excitation sources ranging from the visible tb UV regions. This approach can be applicable for the identification of other transition metal ions substituted in the framework of a zeolite or any other molecular sieve.
Resumo:
A series of aluminosilicate zeolites are characterized by UV Raman spectroscopy for the first time, and UV Raman spectra of various zeolites give strong and clear bands with high resolution, while conventional Raman spectra of these zeolites are difficult to obtain because of a strong background fluorescence. Additionally, these zeolites show several new bands in UV Raman spectroscopy. A summary of these UV Raman spectra over various zeolites suggests that the bands at 470-530, 370-430, 290-410, and 220-280 cm(-1) can be assigned to the bending modes of 4-, 5-, 6-, and 8-membered rings of aluminosilicate zeolites, respectively. Furthermore, it is found that the band intensity of zeolites in UV Raman spectroscopy is dependent on the Si/Al ratio. Moreover, the UV Raman spectra of crystallization, for zeolite X at various times show that, in the initial stage of crystallization, the 4-membered rings (510 cm(-1)) interconnect each other to form beta -cages with 6-membered rings (390 cm(-1)), which further crystallize to zeolite X. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The solid state complexes of trivalent lanthanid, yttrium and scandium with cyclohexane carboxylic acid have been isolated and characterized by IR and Raman spectroscopy. It was found that there are only chelated carboxylate groups in the scandium complex and that there are the chelated, bridged and chelate-bridged carboxylate groups in other rare earth complexes. The former is a mononuclear complex and the latter is a polynuclear polymer. The RE—O coordinate bonds possess the characters of convalent ionic ...
Resumo:
Raman spectroscopy was used to study the molecular structure of a series of selected rare earth (RE) silicate crystals including Y2SiO5 (YSO), LU2SiO5 (LSO), (Lu0.5Y0.5)(2)SiO5 (LYSO) and their ytterbium-doped samples. Raman spectra show resolved bands below 500 cm(-1) region assigned to the modes of SiO4 and oxygen vibrations. Multiple bands indicate the nonequivalence of the RE-O bonds and the lifting of the degeneracy of the RE ion vibration. Low intensity bands below 500 cm(-1) are an indication of impurities. The (SiO4)(4-) tetrahedra are characterized by bands near 200 cm(-1) which show a separation of the components of nu(4) and nu(2), in the 500-700 cm(-1) region which are attributed to the distorting bending vibration and in the 880-1000 cm(-1) region which are attributed to the symmetric and antisymmetric stretching vibrational modes. The majority of the bands in the 300-610 cm(-1) region of Re2SiO5 were found to arise from vibrations involving both Si and RE ions, indicating that there is considerable mixing of Si displacements with Si-O bending modes and RE-0 stretching modes. The Raman spectra of RE silicate crystals were analyzed in terms of the molecular structure of the crystals, which enabled separation of the bands attributed to distinct vibrational units. Copyright (C) 2007 John Wiley & Sons, Ltd.