92 resultados para frequency of periodic temperature
Resumo:
The 9-bp deletion in the COII/tRNA(Lys) intergenic region (region V) of human mitochondrial DNA was screened in 1521 Chinese from 16 ethnic groups and 9 Hen geographic groups. The highest frequency was found in populations of Miao (32.4%) and Bouyei (30.8
Resumo:
Prior synaptic or cellular activity influences degree or threshold for subsequent induction of synaptic plasticity, a process known as metaplasticity. Thus, the continual synaptic activity, spontaneous miniature excitatory synaptic current (mEPSC) may correlate to the induction of long-teen depression (LTD). Here, we recorded whole-cell EPSC and mEPSC alternately in the Schaffer-CA1 synapses in brain slice of young rats, and found that this recording configuration affected neither EPSC nor mEPSC. Low frequency stimulation (LFS) induced variable magnitudes of LTD. Remarkably, larger magnitudes of LTD were significantly correlated to smaller amplitude/lower frequency of the basal mEPSC. Furthermore, under the conditions reduced amplitude/frequency of the basal mEPSC by exposure to behavioral stress immediately before slice preparation or low concentration of calcium in bath solution, the magnitudes of LTD were still inversely correlated to mEPSC amplitude/frequency. These new findings suggest that spontaneous mEPSC may reflect functional and/or structural aspects of the synapses, the synaptic history ongoing metaplasticity. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The present study was carried out to investigate the influence of water temperature on the growth performance and digestive enzyme (pepsin, trypsin and lipase) activities of Chinese longsnout catfish. Triplicate groups of Chinese longsnout catfish (35.6 +/- 0.48 g, mean +/- SE) were reared at different water temperatures (20, 24, 28 and 32 degrees C). The feeding rate (FR), specific growth rate (SGR) and feed efficiency ratio (FER) were significantly affected by water temperatures and regression relationships between water temperature and FI, SGR as well as FER were expressed as FR=-0.016T2+0.91T-10.88 (n=12, R2=0.8752), SGR=-0.026T2+1.39T-17.29 (n=12, R2=0.7599) and FER=-0.013T2+0.70T-8.43 (n=12, R2=0.7272). Based on these, the optimum temperatures for FR, SGR and FER were 27.66, 26.69 and 26.44 degrees C respectively. The specific activities of digestive enzymes at 24 or 28 degrees C were significantly higher than that at 20 or 32 degrees C. In addition, there was a significant linear regression between FR or SGR and specific activities of pepsin and lipase, which indicated that pepsin and lipase played important roles in regulating growth through nutrient digestion in Chinese longsnout catfish.
Resumo:
Superoxide dismutase activity in water hyacinth leaves was not sensitive to small changes in environmental pH, but declined markedly with greater pH changes. KCN inhibited superoxide dismutase activity, suggesting that the enzyme was mainly composed of the Cu-Zn form. Low temperature (2-degrees-C) treatment caused a decline in superoxide dismutase activity. This effect became more pronounced as the treatment time was prolonged. Furthermore, the decline was much more significant than reductions of glucose-6-phosphate dehydrogenase activity or respiration under comparable conditions. With increasing physiological age, superoxide dismutase activity declined and was significantly lower in old than in young leaves. Therefore, superoxide dismutase activity might be employed as one of physiological parameters in studying leaf senescence.
Resumo:
Low temperature (LT) AlN interlayers were used to effectively reduce the tension stress and micro-cracks on the surface of the GaN epilayer grown on Si (111) substrate. Optical Microscopy (OM), Atomic Force Microscopy (AFM), Surface Electron Microscopy (SEM) and X-Ray Diffraction (XRD) were employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). In addition, wet etching method was used to evaluate the defect of the GaN epilayer. The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness, interlayer number and growth temperature of the LT AlN interlayer. With the optimized LT AlN interlayer structures, high quality GaN epilayers with a low crack density can be obtained. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
High-quality Ge epilayer on Si(1 0 0) substrate with an inserted low-temperature Ge seed layer and a thin Si0.77Ge0.23 layer was grown by ultrahigh vacuum chemical vapor deposition. The epitaxial Ge layer with surface root-mean-square roughness of 0.7 nm and threading dislocation density of 5 x 10(5) cm(-2) was obtained. The influence of low temperature Ge seed layer on the quality of Ge epilayer was investigated. We demonstrated that the relatively higher temperature (350 degrees C) for the growth of Ge seed layer significantly improved the crystal quality and the Hall hole mobility of the Ge epilayer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effect of the growth temperature on the surface and interface quality for the GaN/AlN multiquantum well (MQW) layer grown by metal-organic vapour chemical deposition is investigated. The obtained GaN/AlN MQW structure is almost coherent to the underlying AlGaN layer at improved growth conditions. With a relatively low growth temperature, the GaN/AlN MQW growth rate increases, the surface roughness reduces considerably and no macro steps are observed, resulting in a better periodicity of MQW.
Resumo:
ZnO thin films were prepared by pulsed laser deposition (PLD) on glass substrates with growth temperature from room temperature (RT) to 500 degrees C. The effects of substrate temperature on the structural and optical properties of ZnO films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra, and RT photoluminescence (PL) measurements. The results showed that crystalline and (0 0 2)-oriented ZnO films were obtained at all substrate temperatures. As the substrate temperature increased from RT to 500 degrees C, the ratio of grain size in height direction to that in the lateral direction gradually decreased. The same grain size in two directions was obtained at 200 degrees C, and the size was smallest in all samples, which may result in maximum E, and E-0 of the films. UV emission was observed only in the films grown at 200 degrees C, which is probably because the stoichiometry of ZnO films was improved at a suitable substrate temperature. It was suggested that the UV emission might be related to the stoichiometry in the ZnO film rather than the grain size of the thin film. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The effects of growth temperature and V/III ratio on the InN initial nucleation of islands on the GaN (0 0 0 1) surface were investigated. It is found that InN nuclei density increases with decreasing growth temperature between 375 and 525 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters of less than 100 nm, whereas at elevated temperatures the InN islands can grow larger and well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. At a given growth temperature of 500 degrees C, a controllable density and size of separated InN islands can be achieved by adjusting the V/III ratio. The larger islands lead to fewer defects when they are coalesced. Comparatively, the electrical properties of the films grown under higher V/III ratio are improved.