75 resultados para four-wave mixing
Resumo:
Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-fs Ti:sapphire laser at 800 nm, was presented. The 0.85 nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 muJ at pump intensity 3 GW/cm(2), the corresponding parametric gain reached 3.6 x 10(3), the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.
Resumo:
On the basis of self-stability effect of four-wave mixings (FWMs) in high-nonlinear photonic-crystal fibres, a novel multi-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated experimentally at room temperature. The proposed lasers have the capacity of switching and tuning with excellent uniformity and stability. By means of adjusting the attenuators, the triple-, four-, or five-wavelength EDF lasers can be lasing simultaneously. With the assistance of the FWM self-stability function, the multi-wavelength spectrum is excellently stabilized with uniformity less than 0.9 dB.
Resumo:
The spectral bandwidth of three-wave-mixing optical parametric amplification has been investigated. A general mathematical model for evaluating the spectral bandwidth of optical parametric amplification is developed with parametric bandwidth and gain bandwidth via three-wave noncollinear interactions. The spectral bandwidth is determined by expanding the wave-vector mismatch in a Taylor series and retaining terms through second order. The model takes into account the effects of crystal length, noncollinear angle, group velocity, group-velocity dispersion and gain coefficient. The relation between parametric bandwidth and gain bandwidth is clearly defined. The model is applied to a BBO OPA, a LBO OPA and a CLBO OPA.
Resumo:
In this paper, the analytical representations of four wave source functions in high-frequency spectrum range are given on the basis of ocean wave theory and dimensional analysis, and the perturbation method is used to solve the governing equations of ocean wave high-frequency spectrum on the basis of the temporally stationary and locally homogeneous scale relations of microscale wave. The microscale ocean wavenumber spectrum correct to the second order has an explicit structure, its first order part represents the equilibrium between different source functions, and its second order part represents the contribution of microscale wave propagation.
Resumo:
On the basis of the pseudopotential plane-wave method and the local-density-functional theory, this paper studies energetics, stress-strain relation, stability, and ideal strength of beta-SiC under various loading modes, where uniform uniaxial extension and tension and biaxial proportional extension are considered along directions [001] and [111]. The lattice constant, elastic constants, and moduli of equilibrium state are calculated and the results agree well with the experimental data. As the four SI-C bonds along directions [111], [(1) over bar 11], [11(1) over bar] and [111] are not the same under the loading along [111], internal relaxation and the corresponding internal displacements must be considered. We find that, at the beginning of loading, the effect of internal displacement through the shuffle and glide plane diminishes the difference among the four Si-C bonds lengths, but will increase the difference at the subsequent loading, which will result in a crack nucleated on the {111} shuffle plane and a subsequently cleavage fracture. Thus the corresponding theoretical strength is 50.8 GPa, which agrees well with the recent experiment value, 53.4 GPa. However, with the loading along [001], internal relaxation is not important for tetragonal symmetry. Elastic constants during the uniaxial tension along [001] are calculated. Based on the stability analysis with stiffness coefficients, we find that the spinodal and Born instabilities are triggered almost at the same strain, which agrees with the previous molecular-dynamics simulation. During biaxial proportional extension, stress and strength vary proportionally with the biaxial loading ratio at the same longitudinal strain.
Resumo:
An investigation into the three-dimensional propagation of the transmitted shock wave in a square cross-section chamber was described in this paper, and the work was carried out numerically by solving the Euler equations with a dispersion-controlled scheme. Computational images were constructed from the density distribution of the transmitted shock wave discharging from the open end of the square shock tube and compared directly with holographic interferograms available for CFD validation. Two cases of the transmitted shock wave propagating at different Mach numbers in the same geometry were simulated. A special shock reflection system near the corner of the square cross-section chamber was observed, consisting of four shock waves: the transmitted shock wave, two reflection shock waves and a Mach stem. A contact surface may appear in the four-shock system when the transmitted shock wave becomes stronger. Both the secondary shock wave and the primary vortex loop are three-dimensional in the present case due to the non-uniform flow expansion behind the transmitted shock.
Resumo:
The effect of the particle cover over the density interface between two layers of fluids and of the suspended solid particles in the upper turbulcnt layer on the turbulent entrainment has been studied experimentally. The entrainment distance D is a function of the time of power: D=kt, where =0.200-0.130p. For suspended particles in the upper layer and pure 2-layer fluid is equal to 0.200, but the value of k for the suspended particles is smaller than that for the pure 2-layer fluid. The non-dimensional entrainment velocity is E=KRiln, where n=1.50+0.93 p. It is shown that the particle cover over the interface changes the power of Ril in the entrainment and hinders the turbulent entrainment. The variation rule of E for the suspended particles is the same as that for the pure 2-layer fluid, but the K value of the former is smaller than that of the latter. The turbulent mixing mechanism has been discussed.
Resumo:
We propose a scheme for sub-half-wavelength atom localization in a four-level ladder-type atomic system, which is coupled by two classical standing-wave fields. We find that one of the standing-wave fields can help in enhancing the localization precision, and the other is of crucial importance in increasing the detecting probability and leading sub-half-wavelength localization.
Resumo:
We propose an atom localization scheme for a four-level alkaline earth atom via a classical standing-wave field, and give the analytical expressions of the localization peak positions as well as the widths versus the parameters of the optical fields. We show that the probability of finding the atom at a particular position can be increased from 1/4 to 1/3 or 1/2 by adjusting the detuning of the probe field and the Rabi frequencies of the optical fields. Furthermore, the localization precision can be dramatically enhanced by increasing the intensity of the standing-wave field or decreasing the detuning of the probe field. The analytical results are quite accordant to the numerical solutions.
Resumo:
The authors present an analysis of plasmonic wave filter and curved waveguide, simulated using a 2-D finite-difference time-domain technique. With different dielectric materials or surface structures located on the interface of the metal/dielectric, the resonant enhanced wave filter can divide light waves of different wavelengths and guide them with low losses. And the straight or curved waveguide can confine and guide light waves in a subwavelength scale. Within the 20 mu m simulation region, it is found that the intensity of the guided light at the interface is roughly four times the peak intensity of the incident light.
Resumo:
By using the envelope function method we calculated the tunneling escape time of electrons from a quantum well. We adopted a simplified interface matrix to describe the GAMMA-X mixing effect, and employed a wave packet method to determine the tunneling escape time. When the GAMMA state in the well was in resonance with the X state in the barrier, the escape time reduced remarkably. However, it was possible that the wave functions in two different channels, i.e., GAMMA-GAMMA-GAMMA and GAMMA-X-GAMMA, could interfere destructively, leading the escape time greater than that of pure GAMMA-GAMMA-GAMMA tunneling.
Resumo:
The electronic states and optical transition properties of three semiconductor wires Si? GaAs, and ZnSe are studied by the empirical pseudopotential homojunction model. The energy levels, wave functions, optical transition matrix elements, and lifetimes are obtained for wires of square cross section with width from 2 to 5 (root 2a/2), where a is the lattice constant. It is found that these three kinds of wires have different quantum confinement properties. For Si wires, the energy gap is pseudodirect, and the wave function of the electronic ground state consists mainly of four bulk Delta states. The optical transition matrix elements are much smaller than that of a direct transition, and increase with decreasing wire width. Where the width of wire is 7.7 Angstrom, the Si wire changes from an indirect energy gap to a direct energy gap due to mixing of the bulk Gamma(15) state. For GaAs wires. the energy gap is also pseudodirect in the width range considered, but the optical transition matrix elements are larger than those of Si wires by two orders of magnitude for the same width. However, there is no transfer to a direct energy gap as the wire width decreases. For ZnSe wires, the energy gap is always direct, and the optical transition matrix elements are comparable to those of the direct energy gap bulk semiconductors. They decrease with decreasing wire width due to mixing of the bulk Gamma(1) state with other states. All quantum confinement properties are discussed and explained by our theoretical model and the semiconductor energy band structures derived. The calculated lifetimes of the Si wire, and the positions of photoluminescence peaks, are in good agreement with experimental results.
Resumo:
The dynamics and the transition of spiral waves in the coupled Hindmarsh-Rose (H-R) neurons in two-dimensional space are investigated in the paper. It is found that the spiral wave can be induced and developed in the coupled HR neurons in two-dimensional space, with appropriate initial values and a parameter region given. However, the spiral wave could encounter instability when the intensity of the external current reaches a threshold value of 1.945. The transition of spiral wave is found to be affected by coupling intensity D and bifurcation parameter r. The spiral wave becomes sparse as the coupling intensity increases, while the spiral wave is eliminated and the whole neuronal system becomes homogeneous as the bifurcation parameter increases to a certain threshold value. Then the coupling action of the four sub-adjacent neurons, which is described by coupling coefficient D', is also considered, and it is found that the spiral wave begins to breakup due to the introduced coupling action from the sub-adjacent neurons (or sites) and together with the coupling action of the nearest-neighbour neurons, which is described by the coupling intensity D.
Resumo:
We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be increased mainly because of the reduction in the vertical stratification of the upper layer above thermocline, and the enhancement in the vertical stratification of the lower layer under thermocline also contributes to it. The vertical displacement of each isothermal is enlarged and the thermal structure of the upper level is modulated, which is indicative of strong vertical mixing. However, the cold Rossby waves increase the vertical stratification of the upper level, restricting the variability related to the second baroclinic mode. On the other hand, during decaying phase of warm Rossby waves, Ekman upwelling and advection processes associated with the surface cyclonic wind circulation can restrain the downwelling processes, carrying the relatively colder water to the near-surface, which results in an out-of-phase phenomenon between sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) in the SWTIO.
Resumo:
A one-dimensional mixed-layer model, including a Mellor-Yamada level 2.5 turbulence closure scheme, was implemented to investigate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic energy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corresponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the temperature gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.