44 resultados para forage maize


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable water use is seriously compromised in the North China Plain (NCP) due to the huge water requirements of agriculture, the largest use of water resources. An integrated approach which combines the ecosystem model with emergy analysis is presented to determine the optimum quantity of irrigation for sustainable development in irrigated cropping systems. Since the traditional emergy method pays little attention to the dynamic interaction among components of the ecological system and dynamic emergy accounting is in its infancy, it is hard to evaluate the cropping system in hypothetical situations or in response to specific changes. In order to solve this problem, an ecosystem model (Vegetation Interface Processes (VIP) model) is introduced for emergy analysis to describe the production processes. Some raw data, collected by investigating or observing in conventional emergy analysis, may be calculated by the VIP model in the new approach. To demonstrate the advantage of this new approach, we use it to assess the wheat-maize rotation cropping system at different irrigation levels and derive the optimum quantity of irrigation according to the index of ecosystem sustainable development in NCP. The results show, the optimum quantity of irrigation in this region should be 240-330 mm per year in the wheat system and no irrigation in the maize system, because with this quantity of irrigation the rotation crop system reveals: best efficiency in energy transformation (transformity = 6.05E + 4 sej/J); highest sustainability (renewability = 25%); lowest environmental impact (environmental loading ratio = 3.5) and the greatest sustainability index (Emergy Sustainability Index = 0.47) compared with the system in other irrigation amounts. This study demonstrates that application of the new approach is broader than the conventional emergy analysis and the new approach is helpful in optimizing resources allocation, resource-savings and maintaining agricultural sustainability.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies of how global changes and human activities affect plant diversity often focus on broad measures of diversity and discuss the implications of these changes for ecosystem function. We examined how experimental warming and grazing affected species within plant groups of direct importance to Tibetan pastoralists: medicinal plants used by humans and palatable plants consumed by livestock. Warming resulted in species losses from both the medicinal and palatable plant groups; however, differential relative vulnerability to warming occurred. With respect to the percent of warming-induced species losses, the overall plant community lost 27%, medicinal plants lost 21%, and non-medicinal plants lost 40% of species. Losses of palatable and non-palatable species were similar to losses in the overall plant community. The deep-rootedness of medicinal plants resulted in lowered sensitivity to warming, whereas the shallow-rootedness of non-medicinal plants resulted in greater sensitivity to warming; the variable rooting depth of palatable and non-palatable plants resulted in an intermediate response to warming. Predicting the vulnerability of plant groups to human activities can be enhanced by knowledge of plant traits, their response to specific drivers, and their distribution within plant groups. Knowledge of the mechanisms through which a driver operates, and the evolutionary interaction of plants with that driver, will aid predictions. Future steps to protect ecosystem services furnished by medicinal and palatable plants will be required under the novel stress of a warmer climate. Grazing may be an important tool in maintaining some of these services under future warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forage selection plays a prominent role in the process of returning cultivated lands back into grasslands. The conventional method of selecting forage species can only provide attempts for problem-solving without considering the relationships among the decision factors globally. Therefore, this study is dedicated to developing a decision support system to help farmers correctly select suitable forage species for the target sites. After collecting data through a field study, we developed this decision support system. It consists of three steps: (1) the analytic hierarchy process (AHP), (2) weights determination, and (3) decision making. In the first step, six factors influencing forage growth were selected by reviewing the related references and by interviewing experts. Then a fuzzy matrix was devised to determine the weight of each factor in the second step. Finally, a gradual alternative decision support system was created to help farmers choose suitable forage species for their lands in the third step. The results showed that the AHP and fuzzy logic are useful for forage selection decision making, and the proposed system can provide accurate results in a certain area (Gansu Province) of China.