67 resultados para efficiency of markets
Resumo:
以9.7MeV/u的238U36+,5.62MeV/u的70Zn10+为典型离子,分析并模拟了分离扇回旋加速器(SSC)的注入、加速和引出,得到了SSC在理论等时场下横向和纵向的接受度。为了研究SSC在实际情况下的接受度,在实测场的基础上采用Kr-Kb方法以及Lagrange插值方法建立了与实际比较符合的等时场,计算了该等时场下SSC横向和纵向的接受度,发现了导致SSC实际接受度和传输效率低的主要原因在于注入系统中的MSI3元件和引出系统中的MSE3元件设计存在缺陷。模拟结果显示,通过改变MSI3和MSE3的曲率或者垫铁改变元件内部的场分布可以改善SSC的实际接受度和传输效率。
Resumo:
National Natural Science Foundation of China [70673097]
Resumo:
Nonviral vectors are safer than viral systems for gene therapy applications. However, the limited efficacy always prevents their being widely used in clinical practice. Aside from searching new gene nonviral vectors, many researchers focus on finding out new substances to improve the transfection efficiency of existent vectors. In this work, we found a transfection enhancer, nocodazole (NCZ), for dimethyldioctadecylammonium (DODAB, a cationic lipid) bilayer coated gold nanoparticles (AuNPs) mediated gene delivery. It was found that NCZ produces 3-fold transfection enhancement to HEK 293T cells assessed by flow cytometry (FCM). The result was further confirmed by luciferase assay, in which NCZ induced more than 5 times improvement in transfection efficiency after 48 h of transfection. The results from the inductively coupled plasma mass spectrometry (ICP-MS) and FCM showed that NCZ did not affect the internalization of DODAB-AuNPs/DNA complexes. The trafficking of the complexes by transmission electron microscopy (TEM) indicated that the interrupted transportation of the complexes to the lysosomes contributed greatly to the transfection enhancement.
Resumo:
Improved efficiency of organic light-emitting diodes (OLEDs) based on europium complexes have been realized by using a fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl))-4H-pyran (DCJTB) doping. The luminous efficiency of the devices with a fluorescent dye in the emissive layer was found to improve two times of that in devices without fluorescent dye. The devices showed pure red light, which is the characteristic emission of trivalent europium ion with a full-width at half-maximum of 3 nm. The maximum brightness and luminous efficiency reached 1200 cd/m(2) at 23 V and 7.3 cd/A (2.0 Im/w), respectively, at a current density of 0.35 mA/cm(2).
Resumo:
To enhance the photoluminescence and electroluminescence efficiency, light-emitting polymers with energy transferring chromophores including N,N,N'N'-phenylene-diamine, naphthalene-imide, oxadiazole, meta-phenylene vinylene are designed and synthesized.
Resumo:
A PPV derivative containing bulky tetraphenylmethane side chains was synthesised. Its optical properties were examined. Compared to its parent PPV polymer, its UV-Vis absorption and PL showed less red-shift from solution to film, its PL showed much less concentration quenching effect and higher efficiency, its EL device showed 9-fold enhanced efficiency. These improvements were attributed to weakened inter-chain interaction caused by the tetraphenylmethane group.
Resumo:
Photoluminescence (PL) quantum efficiency is a key issue in designing successful light-emitting polymer systems. Exciton relaxation is strongly affected by exciton quenching at nonradiative trapping centers and the formation of excimers. These factors reduce the PL quantum yield of light-emitting polymers. In this work, we have systematically investigated the effects of exciton confinement on the PL quantum yield of an oligomer, polymer, and alternating block copolymer (ABC) PPV system. Time-resolved and temperature-dependent luminescence studies have been performed. The ABC design effectively confine photoexcitations within the chromophores, preventing exciton migration and excimer formation. An unusually high (PL) quantum yield (above 90%) in the solid state is reported for the alternating block copolymer PPV, as compared to that of similar to 30% of the polymer and oligomer model compounds. (C) 2000 Elsevier Science S.A. All rights reserved.