169 resultados para dual crop coefficients


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibito

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The octanol-air partition coefficient (K-OA) is a key descriptor of chemicals partitioning between the atmosphere and environmental organic phases. Quantitative structure-property relationships (QSPR) are necessary to model and predict KOA from molecular structures. Based on 12 quantum chemical descriptors computed by the PM3 Hamiltonian, using partial least squares (PLS) analysis, a QSPR model for logarithms of K-OA to base 10 (log K-OA) for polychlorinated naphthalenes (PCNs), chlorobenzenes and p,p'-DDT was obtained. The cross-validated Q(cum)(2) value of the model is 0.973, indicating a good predictive ability of the model. The main factors governing log K-OA of the PCNs, chlorobenzenes, and p,p'-DDT are, in order of decreasing importance, molecular size and molecular ability of donating/accepting electrons to participate in intermolecular interactions. The intermolecular dispersive interactions play a leading role in governing log K-OA. The more chlorines in PCN and chlorobenzene molecules, the greater the log K-OA values. Increasing E-LUMO (the energy of the lowest unoccupied molecular orbital) of the molecules leads to decreasing log K-OA values, implying possible intermolecular interactions between the molecules under study and octanol molecules. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concise quantitative model that incorporates information on both environmental temperature M and molecular structures, for logarithm of octanol-air partition coefficient (K-OA) to base 10 (logK(OA)) of PCDDs, was developed. Partial least squares (PLS) analysis together with 14 quantum chemical descriptors were used to develop the quantitative relationships between structures, environmental temperatures and properties (QRSETP) model. It has been validated that the obtained QRSETP model can be used to predict logK(OA) of other PCDDs. Molecular size, environmental temperature (T), q(+) (the most positive net atomic charge on hydrogen or chlorine atoms in PCDD molecules) and E-LUMO (the energy of the lowest unoccupied molecular orbital) are main factors governing logK(OA) of PCDD/Fs under study. The intermolecular dispersive interactions and thus the size of the molecules play a leading role in governing logK(OA). The more chlorines in PCDD molecules, the greater the logK(OA) values. Increasing E-LUMO values of the molecules leads to decreasing logK(OA) values, implying possible intermolecular interactions between the molecules under study and octanol molecules. Greater q(+) values results in greater intermolecular electrostatic repulsive interactions between PCDD and octanol molecules and smaller logK(OA) values. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on nine quantum chemical descriptors computed by PM3 Hamiltonian, using partial least squares analysis, a significant quantitative structure-property relationship for the logarithm of octanol-air partition coefficients (log K-OA) of polychlorinated biphenyls (PCBs) was obtained. The cross-validated Q(cum)(2) value of the model is 0.962, indicating a good predictive ability. The intermolecular dispersive interactions and thus the size of the PCB molecules play a key role in governing log K-OA. The greater the size of PCB molecules, the greater the log K-OA values. Increasing E-LUMO (the energy of the lowest unoccupied molecular orbital) values of the PCBs leads to decreasing log K-OA values, indicating possible interactions between PCB and octanol molecules. Increasing Q(Cl)(+) (the most positive net atomic charges on a chlorine atom) and Q(C)(-) (the largest negative net atomic charge on a carbon atom) values of PCBs results in decreasing log K-OA values, implying possible intermolecular electrostatic interactions between octanol and PCB molecules. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on some fundamental quantum chemical descriptors computed by PM3 Hamiltonian, by the use of partial least-squares (PLS) analysis, a significant quantitative structure-property relationship (QSPR) model for logK(ow) of polychlorinated dibenzo-p-dioxins and dibenzo-p-furans (PCDD/Fs) was obtained. The QSPR can be used for prediction. The intermolecular dispersive interactions and thus the bulkness of the PCDD/Fs are the main factors affecting the logK(ow). The more chlorines in the PCDD/F molecule, the greater the logK(ow) values. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A column method was developed to conveniently and reliably determine the soil organic partition coefficients (K-oc) of three insecticides (methiocarb, azinphos-methyl, fenthion), four fungicides (triadimenol, fuberidazole, tebuconazole, pencycuron), and one herbicide (atrazine), in which real soil acted as a stationary phase and the water solution of pesticide as an eluent. The processes of sorption equilibrium were directly shown through a breakthrough curve(BTC). The log K-oc values are 1.69, 1.95, 2.25, 2.55, 2.69, 2.67, 3.10, and 3.33 for atrazine, triadimenol, methiocarb, fuberidazole, azinphos-methyl, tebuconazole, fenthion and pencycuron, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavily iron-implanted silicon was prepared by mass-analyzed low-energy dual ion beam deposition technique. Auger electron spectroscopy depth profiles indicate that iron ions are shallowly implanted into the single-crystal silicon substrate and formed 35 nm thick FexSi films. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is partially restored after as-implanted sample was annealed at 400degreesC. There are no new phases formed. Carrier concentration depth profile of annealed sample was measured by Electrochemical C-V method and indicated that FexSi film shows n-type conductivity while silicon substrate is p-type. The p-n junction is formed between FexSi film and silicon substrate showing rectifying effect. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ridge distributed feedback laser monolithically integrated with a buried-ridge-stripe spot-size converter operating at 1.55 mu m was successfully fabricated by means of low-energy ion implantation quantum-well intermixing and dual-core technologies. The passive waveguide was optically combined with a laterally exponentially tapered active core to control the mode size. The devices emit in a single transverse and single longitudinal mode with a sidemode suppression ratio of 38.0 dB. The threshold current was 25 mA. The beam divergence angles in the horizontal and vertical directions were as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.0-dB coupling loss with a cleaved single-mode optical fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1.60-mu m laser diode and electroabsorption modulator monolithically integrated with a dual-waveguide spot-size converter output for low-loss coupling to cleaved single-mode optical fiber is demonstrated. The devices emit in a single transverse and quasi-single longitudinal mode with a side mode suppression ratio of 25.6 dB. These devices exhibit a 3-dB modulation bandwidth of 16.0 GHz, and modulator extinction ratios of 16.2 dB dc. The beam divergence angle is about 7.3x10.6 deg, resulting in 3.0-dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Society of Photo-optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated an electroabsorption modulator and semiconductor optical amplifier monolithically integrated with novel dual-waveguide spot-size converters (SSC) at the input and output ports for low-loss coupling to a planar light-guide circuit silica waveguide or cleaved single-mode optical fibre. The device was fabricated by means of selective-area MOVPE growth, quantum well intermixing and asymmetric twin waveguide technologies with only a three-step low-pressure MOVPE growth. For the device structure, in the SOA/EAM section, a double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge structure (BRS) was incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of easy processing of the ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB dc and more than 10 GHz 3 dB bandwidth is successfully achieved, The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated a 1.60 mu m ridge-structure laser diode and electroabsorption modulator monolithically integrated with buried-ridge-structure dual-waveguide spot-size converters at the input and output ports for low-loss coupling to a cleaved single-mode optical fibre by means of selective area growth and asymmetric twin waveguide technologies. The devices emit in single transverse and quasi-single longitudinal modes with a side mode suppression ratio of 25.6 dB. These devices exhibit 3 dB modulation bandwidth of 15.0 GHz and modulator extinction ratios of 14.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor optical amplifier and electroabsorption modulator monolithically integrated with dual-waveguide spot-size converters at the input and output ports is demonstrated by means of selective area growth, quantum-well intermixing, and asymmetric twin waveguide technologies. At the wavelength range of 1550 similar to 1600 nm, lossless operation with extinction ratios of 25-dB dc and 11.8-dB radio frequency and more than 10-GHz 3-dB modulation bandwidth is successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0-dB coupling loss with cleaved single-mode optical fiber.