87 resultados para disordered materials
Resumo:
Instrumented indentation tests have been widely adopted for elastic modulus determination. Recently, a number of indentation-based methods for plastic properties characterization have been proposed, and rigorous verification is absolutely necessary for their wide application. In view of the advantages of spherical indentation compared with conical indentation in determining plastic proper-ties, this study mainly concerns verification of spherical indentation methods. Five convenient and simple models were selected for this purpose, and numerical experiments for a wide range of materials are carried out to identify their accuracy and sensitivity characteristics. The verification results show that four of these five methods can give relatively accurate and stable results within a certain material domain, which is defined as their validity range and has been summarized for each method.
Resumo:
The plane strain asymptotic fields for cracks terminating at the interface between elastic and pressure-sensitive dilatant material are investigated in this paper. Applying the stress-strain relation for the pressure-sensitive dilatant material, we have obtained an exact asymptotic solution for the plane strain tip fields for two types of cracks, one of which lies in the pressure-sensitive dilatant material and the other in the elastic material and their tips touch both the bimaterial interface. In cases, numerical results show that the singularity and the angular variations of the fields obtained depend on the material hardening exponent n, the pressure sensitivity parameter mu and geometrical parameter lambda.
Resumo:
Finite element analysis is employed to investigate void growth embedded in elastic-plastic matrix material. Axisymmetric and plane stress conditions are considered. The simulation of void growth in a unit cell model is carried out over a wide range of triaxial tensile stressing or large plastic straining for various strain hardening materials to study the mechanism of void growth in ductile materials. Triaxial tension and large plastic strain encircling around the void are found to be of most importance for driving void growth. The straining mode of incremental loading which favors the necessary strain concentration around void for its growth can be characterized by the vanishing condition of a parameter called "the third invariant of generalized strain rate". Under this condition, it accentuates the internal strain concentration and the strain energy stored/dissipated within the material layer surrounding the void. Experimental results are cited to justify the effect of this loading parameter. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Microsensors and microactuators are vital organs of microelectromechanical systems (MEMS), forming the interfaces between controller and environment. They are usually used for devices ranging in size at sub-millimeter or micrometer level, transforming energy between two or more domains. Presently, most of the materials used in MEMS devices belong to the silicon material system, which is the basis of the integrated circuit industry. However, new techniques are being explored and developed, and the opportunities for MEMS materials selection are getting broader. The present paper tries to apply 'performance index' to select the material best suited to a given application, in the early stage of MEMS design. The selection is based on matching performance characteristics to the requirements. A series of performance indices are given to allow a wide range comparison of materials for several typical sensing and actuating structures, and a rapid identification of candidates for a given task. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The piezoelastodynamic field equations are solved to determine the crack velocity at bifurcation for poled ferroelectric materials where the applied electrical field and mechanical stress can be varied. The underlying physical mechanism, however, may not correspond to that assumed in the analytical model. Bifurcation has been related to the occurrence of a pair of maximum circumferential stress oriented symmetrically about the moving crack path. The velocity at which this behavior prevails has been referred to as the limiting crack speed. Unlike the classical approach, bifurcation will be identified with finite distances ahead of a moving crack. Nucleation of microcracks can thus be modelled in a single formulation. This can be accomplished by using the energy density function where fracture initiation is identified with dominance of dilatation in relation to distortion. Poled ferroelectric materials are selected for this study because the microstructure effects for this class of materials can be readily reflected by the elastic, piezoelectic and dielectric permittivity constants at the macroscopic scale. Existing test data could also shed light on the trend of the analytical predictions. Numerical results are thus computed for PZT-4 and compared with those for PZT-6B in an effort to show whether the branching behavior would be affected by the difference in the material microstructures. A range of crack bifurcation speed upsilon(b) is found for different r/a and E/sigma ratios. Here, r and a stand for the radial distance and half crack length, respectively, while E and a for the electric field and mechanical stress. For PZT-6B with upsilon(b) in the range 100-1700 m/s, the bifurcation angles varied from +/-6degrees to +/-39degrees. This corresponds to E/sigma of -0.072 to 0.024 V m/N. At the same distance r/a = 0.1, PZT-4 gives upsilon(b) values of 1100-2100 m/s; bifurcation angles of +/-15degrees to +/-49degrees; and E/sigma of -0.056 to 0.059 V m/N. In general, the bifurcation angles +/-theta(0) are found to decrease with decreasing crack velocity as the distance r/a is increased. Relatively speaking, the speed upsilon(b) and angles +/-theta(0) for PZT-4 are much greater than those for PZT-6B. This may be attributed to the high electromechanical coupling effect of PZT-4. Using upsilon(b)(0) as a base reference, an equality relation upsilon(b)(-) < upsilon(b)(0) < upsilon(b)(+) can be established. The superscripts -, 0 and + refer, respectively, to negative, zero and positive electric field. This is reminiscent of the enhancement and retardation of crack growth behavior due to change in poling direction. Bifurcation characteristics are found to be somewhat erratic when r/a approaches the range 10(-2)-10(-1) where the kinetic energy densities would fluctuate and then rise as the distance from the moving crack is increased. This is an artifact introduced by the far away condition of non-vanishing particle velocity. A finite kinetic energy density prevails at infinity unless it is made to vanish in the boundary value problem. Future works are recommended to further clarify the physical mechanism(s) associated with bifurcation by means of analysis and experiment. Damage at the microscopic level needs to be addressed since it has been known to affect the macrocrack speeds and bifurcation characteristics. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The fit of fracture strength data of brittle materials (Si3N4, SiC, and ZnO) to the Weibull and normal distributions is compared in terms of the Akaike information criterion. For Si3N4, the Weibull distribution fits the data better than the normal distribution, but for ZnO the result is just the opposite. In the case of SiC, the difference is not large enough to make a clear distinction between the two distributions. There is not sufficient evidence to show that the Weibull distribution is always preferred to other distributions, and the uncritical use of the Weibull distribution for strength data is questioned.
Resumo:
In this paper, the dynamic response of a penny-shaped interface crack in bonded dissimilar homogeneous half-spaces is studied. It is assumed that the two materials are bonded together with such a inhomogeneous interlayer that makes the elastic modulus in the direction perpendicular to the crack surface is continuous throughout the space. The crack surfaces art assumed to be subjected to torsional impact loading. Laplace and Hankel integral transforms are applied combining with a dislocation density,function to reduce the mixed boundary value problem into a singular integral equation with a generalized Cauchy kernel in Laplace domain. By solving the singular integral equation numerically, and using a numerical Laplace inversion technique, the dynamic stress intensity factors art obtained. The influences of material properties and interlayer thickness on the dynamic stress intensity factor are investigated.
Resumo:
A preliminary analysis on crack evolution in viscoelastic materials was presented. Based on the equivalent inclusion concept of micro-mechanics theory, the explicit expressions of crack opening displacement delta and energy release rate G were derived, indicating that both delta and G are increasing with time. The equivalent modulus of the viscoelastic solid comprising cracks was evaluated. It is proved that the decrease of the modulus comes from two mechanisms: one is the viscoelasticity of the material; the other is the crack opening which is getting larger with time.
Resumo:
Semi-weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi-weight functions were obtained as virtual displacement and stress fields with eigenvalue-lambda. Integral expression of fracture parameters, K-I and K-II, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi-weight function method is a simple, convenient and high precision calculation method.
Resumo:
A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is compared with that based on the tension-shear chain model and finite element simulation, respectively. It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By increasing the number of hierarchy level, the shear-lag result is consistent with the finite element result. However the tension-shear chain model leads to an opposite trend. The transition point position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis.
Resumo:
In this paper, we attempted to construct a constitutive model to deal with the phenomenon of cavitation and cavity growth in a rubber-like material subjected to an arbitrary tri-axial loading. To this end, we considered a spherical elementary representative volume in a general Rivlin's incompressible material containing a central spherical cavity. The kinematics proposed by [Hou, H.S., Abeyaratne, R., 1992. Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571-722] was adopted in order to construct an approximate but optimal field. In order to establish a suitable constitutive law for this class of materials, we utilized the homogenisation technique that permits us to calculate the average strain energy density of the volume. The cavity growth was considered through a physically realistic failure criterion. Combination of the constitutive law and the failure criterion enables us to describe correctly the global behaviour and the damage evolution of the material under tri-axial loading. It was shown that the present models can efficiently reproduce different stress states, varying from uniaxial to tri-axial tensions, observed in experimentations. Comparison between predicted results and experimental data proves that the proposed model is accurate and physically reasonable. Another advantage is that the proposed model does not need special identification work, the initial Rivlin's law for the corresponding incompressible material is sufficient to form the new law for the compressible material resulted from cavitation procedure. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This article derives and provides a theoretical analysis for the mechanical erosion of carbon-base materials in ablation. The theory of mechanical erosion based on a nondimensional critical roughness parameter is proposed, The important parameters in this analytical method are independent of the test, The analysis accounts for the heating, pressure, and shear forces acting on material particles exposed to the boundary-layer flow. For the validity of a theoretical analytical method a computational example is given. The theoretical results agree fairly with the experimental data.
Resumo:
The generalized Shmuely Difference Algorithm (GSDA) is presented here to analyze the dynamic fracture performance of orthogonal-anisotropic composite materials, such as glass fibre reinforced phenolplast. The difference recurrence Formulae and boundary condition difference extrapolation formulae are derived and programmed. The dynamic stress intensity factors (DSIF) of the isotropic and anisotropic centrally cracked plates are computed respectively using GSDA and compared with that published previously. GSDA is proved effective and reliable. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The concept ''sample-specific'' is suggested to describe the behavior of disordered media close to macroscopic failure. it is pointed out that the transition from universal scaling to sample-specific behavior may be a common phenomenon in failure models of disordered media. The dynamical evolution plays an important role in the transition.