111 resultados para diffraction efficiency spectrum
Resumo:
We present a theoretical model in which the band-transport equations and the coupled-wave equations are considered to study the two thermal-fixing methods (simultaneous fixing and postfixing) in Fe:LiNbO3. We found that, in simultaneous fixing, the existing ionic-grating affects the writing of the electronic grating by reduction of the coupling gain, and the grating envelope of the fixed-index grating is quite uniform inside the photorefractive crystal in comparison with the method of postfixing. The resulting diffraction efficiency of the fixed-volume grating is dependent mainly on the initial intensity modulation of the two writing beams. A set of experiments is also presented. (C) 1998 Optical Society of America.
Resumo:
The photorefractive planar lens for converting a vertical incident plane wave to a lateral-spread spherical wave and vice versa, is suggested. Using the two-beam coupled-wave theory, the coupled wave equations are derived and their half-analytical solutions are also given in terms of an infinite series. The diffraction properties (beam profiles, diffraction efficiency) of the local volume grating in the lens are presented. And the focusing property of the lens is discussed and compared with that of an ideal convergent spherical wave. It is demonstrated that the suggested photorefractive planar lens shows a good focusing effect. (c) 2004 Elsevier GmbH. All rights reserved.
Resumo:
实验研究了掺杂组份比对LiNbO3:Cu:Ce晶体非挥发全息记录性能的影响。结果表明.在全息记录过程中,掺杂组份比通过改变晶体的紫外光吸收特性而引起全息记录性能的改变。增加LiNbO3:Cu:Ce晶体中Cu和Ce的掺杂组份比会导致晶体对紫外光吸收的增强,进而提高了全息记录灵敏度和固定衍射效率。在弱氧化处理的掺有CuO和Ce2O4的质量分数分别为0.085%和0.011%的LiNbO3:Ce:Cu晶体中.得到了最高的固定衍射效率ηf=32%和记录灵敏度S=0.022cm/J。
Resumo:
The formation of the non-uniformity of the non-volatile volume grating in doubly doped LiNbO3 crystals is studied in detail. We find that the non-uniformity of the grating is mainly caused by strong ultraviolet light absorption, and the average saturation space-charge field is small and the diffraction efficiency is low as a result of the non-uniformity of the grating. In order to optimize the uniformity of the grating, we propose the recording scheme by using two sensitizing beams simultaneously from the two opposite sides of the crystals. Theoretical simulations and experimental verifications are performed. Results show that the well uniformed grating with high diffraction efficiency can be obtained by using this optimization scheme. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The influence of the recording conditions, including the widths of the recording beams, the width ratio of the recording beams, and the recording angles, on the properties of crossed-beam photorefractive gratings in doubly doped LiNbO3 crystals is studied. A theoretical model that combines the band transport model with two-dimensional coupled-wave theory is proposed. The numerical calculations of the space-charge field, the intensity profiles of the diffracted beam, and the diffraction efficiency are presented. (C) 2006 Optical Society of America.
Resumo:
提出了一种在双掺杂铌酸锂晶体中用调制的双紫外光进行非挥发全息记录的方法。与通常的用紫外光敏化的非挥发全息记录相比,这种方法可以大幅度地提高光栅强度和记录灵敏度。联立双中心物质方程和双光束耦合波方程,数值分析了光栅强度和衍射效率随时间的变化并讨论了掺杂浓度和记录光强对紫外光非挥发全息记录机制下光折变效应的影响。研究发现,紫外光记录得到的深浅中心的光栅具有相同的相位,总的光栅(深浅中心光栅的叠加)强度为两光栅强度之和,固定过程中深中心的光栅得到增强;增大深浅中心掺杂的浓度可以提高光栅强度,增大记录紫外光的光强
Resumo:
Based on a modified coupled wave theory, the pulse shaping properties of volume holographic gratings (VHGs) in anisotropic media VHGs are studied systematically. Taking photorefractive LiNbO3 crystals as an example, the combined effect that the grating parameters, the dispersion and optical anisotropy of the crystal, the pulse width, and the polarization state of the input ultrashort pulsed beam (UPB) have on the pulse shaping properties are considered when the input UPB with arbitrary polarization state propagates through the VHG. Under the combined effect, the diffraction bandwidth, pulse profiles of the diffracted and transmitted pulsed beams, and the total diffraction efficiency are shown. The studies indicate that the properties of the shaping of the o and e components of the input UPB in the crystal are greatly different; this difference can be used for pulse shaping applications. (c) 2006 Optical Society of America.
Resumo:
Based on the two-dimensional coupled-wave theory, the wavefront conversion between cylindrical and plane waves by local volume holograms recorded at 632.8 nm and reconstructed at 800 nm is investigated. The proposed model can realize the 90 degrees holographic readout at a different readout wavelength. The analytical integral solutions for the amplitudes of the space harmonics of the field inside the transmission geometry are presented. The values of the off-Bragg parameter at the reconstructed process and the diffracted beam's amplitude distribution are analysed. In addition, the dependences of diffraction efficiency on the focal length of the recording cylindrical wave and on the geometrical dimensions of the grating are discussed. Furthermore, the focusing properties of this photorefractive holographic cylindrical lens are analysed.
Resumo:
We have investigated ultraviolet (UV) photorefractive effect of lithium niobate doubly doped with Ce and Cu. It is found the diffraction efficiency shows oscillating behavior Under UV-1ight-recording. A model in which electrons and holes can be excited from impurity centers in the UV region is proposed to study the oscillatory behavior of the diffraction efficiency. Oil the basis of the material equations and the coupled-wave equations, we found that the oscillatory behavior is due to the oscillation of the relative spatial phase shift Phi. And the electron-hole competition may cause the oscillation of the relative spatial phase shift. A switch point from electron grating to hole grating is chosen to realize nonvolatile readout by a red light with high sensitivity (0.4 cm/J). (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We obtain analytical solutions of the coupled wave equations that describe the Bragg diffraction of ultrashort pulsed finite beams by a thick planar grating, using two-dimensional coupled wave theory. The diffraction properties for the case of an ultrashort pulsed finite beam with Gaussian profiles in both the time and spatial domains are investigated. The spectral bandwidth of the diffracted beam, the Bragg selectivity bandwidth and the diffraction efficiency of the volume grating are influenced by the geometry parameter and the input bandwidth. Therefore extra attention should be paid to designing optical elements based on volume gratings for use with ultrashort pulsed waves in applications of pulse shaping and processing.
Resumo:
The three-dimensional coupled wave theory is extended to systematically investigate the diffraction properties of finite-sized anisotropic volume holographic gratings (VHGs) under ultrashort pulsed beam (UPB) readout. The effects of the grating geometrical size and the polarizations of the recording and readout beams on the diffraction properties are presented, in particular under the influence of grating material dispersion. The wavelength selectivity of the finite-sized VHG is analyzed. The wavelength selectivity determines the intensity distributions of the transmitted and diffracted pulsed beams along the output face of the VHG. The distortion and widening of the diffracted pulsed beams are different for different points on the output face, as is numerically shown for a VHG recorded in a LiNbO3 crystal. The beam quality is analyzed, and the variations of the total diffraction efficiency are shown in relation to the geometrical size of the grating and the temporal width of the readout UPB. In addition, the diffraction properties of the finite-sized and one-dimensional VHG for pulsed and continuous-wave readout are compared. The study shows the potential application of VHGs in controlling spatial and temporal features of UPBs simultaneously. (C) 2007 Optical Society of America
Resumo:
We described a highly efficient polarizing beam splitter (PBS) of a deep-etched binary-phase fused-silica grating, where TE- and TM-polarized waves are mainly diffracted in the -1st and 0th orders, respectively. Tb achieve a high extinction ratio and diffraction efficiency, the grating depth and period are optimized by using rigorous coupled-wave analysis, which can be well explained based on the modal method with effective indices of the modes for TE/TM polarization. Holographic recording technology and inductively coupled plasma etching are employed to fabricate the fused-silica PBS grating. Experimental results of diffraction efficiencies approaching 80% for a TE-polarized wave in the -1st order and more than 85% for a TM-polarized wave in the 0th order were obtained at a wavelength of 1550 nm. Because of its compact structure and simple fabrication process, which is suitable for mass reproduction, a deep-etched fused-silica grating as a PBS should be a useful device for practical applications. (C) 2007 Optical Society of America
Resumo:
对光折变全息记录特别是双中心全息记录中90°记录结构下较低的衍射效率进行了研究, 采用局域衍射理论对90°记录结构的衍射进行了分析,表明在同样的折射率变化和2 mm的光束宽度的情况下, 只有当折射率光栅振幅大于10-4时, 90°记录结构衍射效率才能够与小角度透射记录结构的衍射效率大致相当。针对环境干扰导致的干涉条纹振动影响光栅记录, 提出了有效调制度概念, 根据分析90°记录结构的干涉条纹间距很小, 容易受外界环境干扰而导致低的折射率变化率, 因此应采用主动条纹锁定系统。此外在双中心全息记录中, 微观光
Resumo:
A novel multifunctional inorganic-organic photorefractive (PR) poly(N-vinyl)-3-[p-nitrophenylazolcarbazolyl-CdS nanocomposites with different molar ratios of US to poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl (PVNPAK) were synthesized via a postazo-coupling reaction and chemically hybridized approach, respectively. The nanocomposites are highly soluble and could be obtained as film-forming materials with appreciably high molecular weights and low glass transition temperature (T,) due to the flexible spacers. The PVNPAK matrix possesses a highest-occupied molecular orbital value of about -5.36 eV determined from cyclic voltammetry. Second harmonic generation (SHG) could be observed in PVNPAK film without any poling procedure and 4.7 pm/V of effective second-order nonlinear optical susceptibility is obtained. The US particles as photosensitizers had a nanoscale size in PVNPAK adopting transmission electron microscopy. The improvement of interface quality between US and polymer matrix is responsible for efficient photoinduced charge generation efficiency in the nanocomposites. An asymmetric optical energy exchange between two beams on the polymer composites PVNPAK-CdS/ECZ has been found even without an external field in two-beam coupling (TBC) experiment, and the TBC gain and diffraction efficiency of 14.26 cm(-1) and 3.4% for PVNPAK-5-CdS/ECZ, 16.43 cm(-1) and 4.4% for PVNPAK-15-CdS/ECZ were measured at a 647.1 nm wavelength, respectively.
Resumo:
We propose a miniature pulse compressor that can be used to compensate the group velocity dispersion that is produced by a commercial femtosecond laser cavity. The compressor is composed of two identical highly efficient deep-etched transmissive gratings. Compared with prism pairs, highly efficient deep-etched transmissive grating pairs are lightweight and small. With an optimized groove depth and a duty cycle, 98% diffraction efficiency of the -1 transmissive order can be achieved at a wavelength of 800 nm under Littrow conditions. The deep-etched gratings are fabricated in fused silica by inductively coupled plasma etching. With a pair of the fabricated gratings, the input positively chirped 73.9 fs pulses are neatly compressed into the nearly Fourier transform-limited 43.2 fs pulses. The miniature deep-etched grating-based pulse compressor should be of interest for practical applications. (c) 2008 Optical Society of America