34 resultados para constant rate infusion
Resumo:
Studies of the extraction kinetics of cerium(IV) into n-heptane solutions of di(2-ethylhexyl)-2-ethylhexyl phosphonate DEHEHP from HNO3-HF solutions have been carried out using a constant interfacial cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The effects of the stirring rate, specific interfacial area, and temperature on the extraction rate showed that the most probable reaction zone is in the aqueous homogeneous phase. The results were compared with those of the system without HF. It was concluded that the presence of HF decreases the extraction rate of cerium. The addition of HF increases the activation energy for the forward reaction from 21.2 to 55.3 kJ/mol and for the reverse process from 57.9 to 79.0 kJ/mol. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the corresponding rate equation was deduced as follows:-d[Ce]/dt = k[Ce] center dot B-0.62 center dot HF-0.58 center dot [NO3-](0.57)
Resumo:
The Yttrium(III) extraction kinetics and mechanism with secnonylphonoxy acetic acid (CA-100) were investigated by a constant interfacial cell with laminar flow. The studies of interfacial tension and solubility of extractant and effects of the stirring rate, temperature, specific interfacial area and species concentration on the extraction rate showed that the extraction regime was dependent on the extraction conditions and the most probable reaction zone was at the liquid-liquid interface. The rate equation of extracting yttrium by CA-100 in heptane was Rf = k[Y3+]((a))[H(2)A(2)]((o))(0.88)[H+]((a))(-1.08).
Resumo:
A novel constant interfacial cell with laminar flow is proposed as an approach to obtain extraction kinetics data in liquid-liquid systems. Applications and theoretical fundamentals of the apparatus have been elaborated.. The equation which can express the mass transfer of liquid-liquid system run in the constant interfacial cell with laminar flow is deduced. Simulations from the equations indicate that diffusivity is a suitable factor to represent the characteristics of extraction kinetics rather than the extraction rate in the diffusion controlling step. The dependence of the aqueous phase concentration on time is recommended to determine the extraction regime. The diffusivities of the EuCl3-HDEHP extraction system obtained by different methods are compared to certify the hydrodynamic theory of the cell. The diffusivities of the ErCl3-HEH/EHP extraction system are determined, which show that this technique is a convenient method to obtain the diffusivities in the liquid-liquid system and to determine the extraction regime. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Steady-state voltammograms at a microdisk electrode are used to measure the diffusion coefficient (D) and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG.MClO(4). The diffusion coefficient and standard heterogeneous rate constant of ferrocene are both smaller in polymer solvents than in monomeric solvents. The D and k(s) of ferrocene have been estimated in PEG containing different concentrations and cations of supporting electrolytes, and the dependencies of D and k(s) on temperature have been observed. These results show that the D and k(s) of ferrocene increase with increasing temperature in polyelectrolyte, and with increasing cation radius of supporting electrolyte, eg D and k(s) increase in the order Bu(4)NClO(4) > NaClO4 > LiClO4. On the other hand, D and k(s) increase with decreasing concentration of supporting electrolyte. The dependence of the half-wave potential (E(1/2)) on the concentration of the supporting electrolyte is also observed. E(1/2) shifts in the negative direction as the concentration of supporting electrolyte increases. (C) 1997 Elsevier Science Ltd.