43 resultados para compression bandages
Resumo:
We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52 fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12 fs.
Resumo:
Dynamic planar compressive experiments on a typical tough Zr-BMG (Bulk Metallic Glass) were carried out under impact velocity of 500-600 m/sec and strain rate of 10(6)/s. The fracture surface of samples exhibits different fracture patterns at different parts of the sample. At a corner close to the front loading boundary, fracture patterns from the free edge toward the centre changed from equiaxial veins in microscale to periodic corrugations in nanoscale; in the middle of the sample, the fracture surface contains glazed zones laid out orderly along the same boundary. FEM simulation was performed to investigate the stress distributions in the impacted sample under a short duration impact loading. It has revealed that the fracture patterns changing from the free edge toward the centre were resulted from the fracture modes' changing from the tensile dominant fracture to the shear dominant fracture. Whereas at the middle part of the sample, fracture initiated from several parallel shear bands propagating close to the same boundary is due to a large strain or much higher shear stress in this area.
Resumo:
A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9. The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition. Both the mean wall pressure and the velocity profiles agree with those of the experimental data, which validates the simulation. The turbulent kinetic energy budget in the separation region is analyzed. Results show that the turbulent production term increases fast in the separation region, while the turbulent dissipation term reaches its peak in the near-wall region. The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation. Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble, the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance, but rather the instability of separation bubble.
Resumo:
The nuclear stopping and the radial flow are investigated with an isospin-dependent quantum molecular dynamics (IQMD) model for Ni + Ni and Pb + Pb from 0.4 to and 1.2 GeV/u. The expansion velocity as well as the degree of nuclear stopping are higher in the heavier system at all energies. The ratio between the flow energy and the total available energy in center of mass of the colliding systems exhibits a positive correlation to the degree of nuclear stopping. The maximum density (rho(max)) achieved in the compression is comparable to the hydrodynamics prediction only if the non-zero collision time effect is taken into account in the later. Due to the partial transparency, the growing of the maximum density achieved in the central region of the fireball with the increase of beam energy becomes gradually flat in the 1 GeV/u energy regime. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Heavy Ion Research Facility and Cooling Storage Ring (HIRFL-CSR) accelerator in Lanzhou offers a unique possibility for the generation of high density and short pulse heavy ion beams by non-adiabatic bunch compression longitudinally, which is implemented by a fast jump of the RF-voltage amplitude. For this purpose, an RF cavity with high electric field gradient loaded with Magnetic Alloy cores has been developed. The results show that the resonant frequency range of the single-gap RF cavity is from 1.13 MHz to 1.42 MHz, and a maximum RF voltage of 40 kV with a total length of 100 cm can be obtained, which can be used to compress heavy ion beams of U-238(72+) with 250 MeV/u from the initial bunch length of 200 ns to 50 ns with the coaction of the two single-gap RF cavity mentioned above.
Resumo:
Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.
Resumo:
In this paper, an introduction of wavelet transform and multi-resolution analysis is presented. We describe three data compression methods based on wavelet transform for spectral information,and by using the multi-resolution analysis, we compressed spectral data by Daubechies's compactly supported orthogonal wavelet and orthogonal cubic B-splines wavelet, Using orthogonal cubic B-splines wavelet and coefficients of sharpening signal are set to zero, only very few large coefficients are stored, and a favourable data compression can be achieved.
Resumo:
Monolayers of porphyrin and phthalocyanine at the air-water interface were studied by means of film balance and Brewster angle microscopy (BAM). Results showed that the final point of compression isotherm and that of recompression isotherm were coincident or not coincident depending on the target pressures. Results were discussed in terms of the morphology of monolayers observed by BAM.