47 resultados para complexe du pore nucléaire
Resumo:
The micro-pore configurations on the matrix surface were studied by SEM. The matrix of molten carbonate fuel cell (MCFC) performance was also improved by the better coordination between the reasonable radius of the micro-pores and the higher porosity of the cell matrix. The many and complicated micro-pore configurations in the cell matrix promoted the volatilization of the organic additives and the burn of polyvinyl butyral (PVB). The smooth volatilization of the organic additives and the complete burn of PVB were the significant factors for the improved MCFC performance. Oxygen diffusion controlled-burn mechanism of PVB in the cell matrix was proposed. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The catalytic behavior of Mo-based zeolite catalysts with different pore structure and size, particularly with 8 membered ring ( M R), 10 M R, coexisted 10 and 12 M R, and 12 M R, was studied in methane aromatization under the conditions of SV=1500 ml/(g.h), p=0.1 MPa and T = 973 K. It was found that the catalytic performance is correlated with the pore structure of the zeolite supports. The zeolites that possess 10 MR or 10 and 12 MR pore structure with a pore diameter equal to or slightly larger than the dynamic diameter of benzene molecule, such as ZSM-5, ZSM-11, ZRP-1 and MCM-22, are fine supports. Among the tested zeolite supports, MCM-22 exhibits the highest activity and selectivity for benzene. A methane conversion of 10.5% with benzene selectivity of 80% was achieved over Mo/MCM-22 catalyst. The Mo/ERS-7 catalyst with 8 MR (0.45 nm) does not show any activity in methane dehydro-aromatization, while Mo/JQX-1 and Mo/SBA-15 catalysts with 12 MR pore exhibit little activity in the reaction. It can be concluded that the zeolites with 10 MR pore or coexisted 10 and 12 MR, having pore size equal to or slightly larger than the dynamic diameter of benzene molecule, are fine supports for methane activation and aromatization.
Resumo:
In this study, a novel sol-gel method is used to synthesize amorphous silica-alumina materials with a narrow mesoporous distribution and various Si/Al molar ratios without using any templates and pore-regulating agents. During the preparation procedure, only inexpensive inorganic salts were used as raw materials, instead of expensive and harmful alkoxides. The precursor sol was dried at room temperature in a vacuum box kept at 60 mmHg until it began to form the gel. The results of a nitrogen sorption experiment indicate that the synthesized materials with different Si/Al molar ratios have similar mesoporous distributions (within 2-12 nm). Moreover, it was found that the material's pore size distribution remains at a similar value during the heat treatment from room temperature to 550 degreesC. On the basis of the nitrogen sorption, TEM, and AFM characterization results, a formation mechanism of mesopores which accounts for the experimental data is also suggested. This suggested mechanism involves rearrangement of the primary particles during the drying process to form the precursors of the similarly sized mesopores. The synthesized materials were characterized by XRD, thermal analysis (TG/DTA), Al-27 and Si-29 MAS NMR spectroscopy, SEM, TEM, and AFM. The results of Al-27 and 29Si MAS NMR indicate that the distribution of silicon and aluminum in the synthesized materials is more uniform and homogeneous than that in the mixed oxides prepared via the traditional sol-gel method even at high alumina contents. The type and density of the acid sites were studied using pyridine adsorption-desorption FTIR spectroscopy. It was shown that the acidity of the synthesized materials is higher than that of the silica-alumina materials prepared by conventional methods.
Resumo:
Thiol-functionalized mesoporous ethane-silicas with large pore were synthesized by co-condensation of 1,2-bis(trimethoxy-sily)ethane (BTME) with 3-mercaptopropyltrimethoxysilane (MPTMS) using nonionic oligomeric polymer C1H (OCH(2)-CH(2))(10)OH (Brij-76) or poly(alkylene oxide) block copolymer (P123) as surfactant in acidic medium. The results of powder X-ray diffraction (XRD), nitrogen gas adsorption, and transmission electron microscopy (TEM) show that the resultant materials have well-ordered hexagonal mesoscopic structure with uniform pore size distributions. (29)Si MAS NNR, (13)C CP-MAS NMR. FT-IR, and UV Raman spectroscopies confirm the attachment of thiol functionalities in the mesoporous ethane-sificas. The maximum content of the attached thiol group (-SH) in the mesoporous framework is 2.48mmol/g. The ordered mesoporous materials are efficient Hg(2+) adsorbents with almost every -SH site accessible to Hg(2+). In the presence of various kinds of heavy metal ions such as Hg(2+), Cd(2+), Zn(2+), Cu(2+) and Cr(3+), the materials synthesized using poly(alkylene oxide) block cooollxmier (Pluronic 123) g(2+), as surfactant show almost similar affinity to Hg(2+), Cd(2+), and Cr(3+), while the materials synthesized using ofigomeric polymer C(18)H(37)(OCH(2)CH(2))(10)OH (Brij-76) as surfactant exhibit high selectivity to Hg(2+). (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A new post-grafting process, consisting of two steps of substrate preparation and sol - gel post-grafting, has been developed to prepare titanium-doped mesoporous SBA-15 material with a double-layered structure and locally concentrated titanium content at the inner pore surface. With this novel technique, the single phased and originally ordered mesostructures can be well conserved; in the conventional direct synthesis they can be partially damaged when the frameworks are doped with high content heteroatoms. Titanium species exist in an isolated, tetrahedral structure and are localized at the pore surface; this is beneficial to both reactant access and product release. Characterization with XRD, N-2 adsorption/desorption isotherms, HREM/ EDS, ICP, UV - Vis, and the newly developed UV - Raman spectroscopy confirm these results. Preliminary catalytic tests with the selective epoxidation of cyclohexene show good catalytic activity. Among them, sample TiSBA-15-10 with a Si : Ti molar ratio of 10 shows a TON value of 75 and a highest product ( epoxide) yield of 55%.
Resumo:
A new mesoporous sphere-like SBA-15 silica was synthesized and evaluated in terms of its suitability as stationary phases for CEC. The unique and attractive properties of the silica particle are its submicrometer particle size of 400 nm and highly ordered cylindrical mesopores with uniform pore size of 12 nm running along the same direction. The bare silica particles with submicrometer size have been successfully employed for the normal-phase electrochromatographic separation of polar compounds with high efficiency (e.g., 210 000 for thiourea), which is matched well with its submicrometer particle size. The Van Deemeter plot showed the hindrance to mass transfer because of the existence of pore structure. The lowest plate height of 2.0 mu m was obtained at the linear velocity of 1.1 mm/s. On the other hand, because of the relatively high linear velocity (e.g., 4.0 mm/s) can be generated, high-speed separation of neutral compounds, anilines, and basic pharmaceuticals in CEC with C-18-modified SBA-15 silica as stationary phases was achieved within 36, 60, and 34 s, respectively.